Pituitary “incidentaloma”: Neuroradiological assessment and differential diagnosis

Vladimir Vasilev*, Liliya Rostomyan*, Adrian F. Daly, Iulia Potorac, Sabina Zacharieva, Jean-François Bonneville and Albert Beckers

1. Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Belgium; 2. Clinical Centre of Endocrinology and Gerontology, Medical University, Sofia, Bulgaria.

* VV and LR contributed equally

Declaration of interest:

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding:

This research was supported by a grant from the Fonds d'Investissement de Recherche Scientifiques (FIRS) of the Centre Hospitalier Universitaire de Liège, Liège, Belgium.

Address for Correspondence:

Albert Beckers MD, PhD
Chief, Department of Endocrinology
Centre Hospitalier Universitaire de Liège
University of Liège
Domaine Universitaire du Sart-Tilman
4000 Liège
Belgium
e-mail: albert.beckers@chu.ulg.ac.be
Abstract

Pituitary incidentalomas are a by-product of modern imaging technology. The term “incidentaloma” is neither a distinct diagnosis nor a pathological entity. Rather, it should be considered a collective designation for different entities that are discovered fortuitously and that requires a working diagnosis based on the input of the radiologist, endocrinologist and often a neurosurgeon. In addition to pathological conditions affecting the pituitary, a thorough knowledge of the radiological characteristics of normal variants and technical artifacts is required to come to an accurate differential diagnosis. After careful radiological and hormonal evaluation the vast majority of pituitary incidentalomas turn out to be non-functioning pituitary microadenomas and Rathke’s cleft cysts. Based on the low growth potential of non-functioning pituitary microadenomas and Rathke’s cleft cysts, periodic MRI surveillance is currently considered the optimal management strategy. Stricter follow up is required for macroadenomas, as size increases occur more frequently.

Keywords: pituitary adenoma, incidentaloma, non-functioning adenoma, radiology, MRI
Introduction

New diagnostic and therapeutic methods influence medicine in many positive ways. However, besides the obvious benefits that technological advances bring, they also have some unintended consequences. Modern radiological investigations are no exception. High-resolution imaging provides the opportunity to visualize anatomical structures more clearly. On the other hand, it increases the number of findings that are unrelated to the reason for the original scan. Hence it is a challenge to know what to do when faced with such “diseases of modern technology” that are often termed incidentalomas.

The term "incidentaloma" can be applied to a random discovery in any organ. In everyday clinical practice incidentalomas are most frequently found in kidneys, thyroid gland, liver, adrenal glands, and pituitary. However, incidentalomas of endocrine glands present additional challenges not only for their high prevalence but also for their risk of autonomous hormonal activity or for impairing normal glandular function. As frank clinical manifestations are characteristically absent, resolving the true hormonal status of incidentalomas may be challenging. Recent progress in neuroimaging has resulted in increased recognition of sellar and parasellar lesions. In order to be termed as a pituitary incidentaloma the imaging investigation should be performed in patients without overt signs and symptoms of pituitary disease. Pituitary adenomas and Rathke’s cleft cysts (RCC) are the most frequently encountered incidentally discovered entities in the pituitary region. However, the differential diagnosis of an incidentally discovered sellar mass is much broader and includes a large number of other entities (Table 1).

The aim of the present review is to discuss the differential diagnosis of pituitary incidentalomas from the radiologist’s and endocrinologist’s perspectives.

How frequent are pituitary incidentalomas?

Data on the prevalence of pituitary incidentalomas is generally derived from retrospective autopsy and imaging studies. The estimated figures vary widely from 1.5 % to 38 % depending
on the era of the study and the study population. This variability reflects differences in definitions of pituitary incidentaloma used by the authors (asymptomatic, non-functioning pituitary adenoma or incidentally noted lesion), the type of the study (autopsy or radiological) and the imaging technique (CT, 1.5 Tesla or 3 Tesla MRI)2, 3. In the largest meta-analysis of autopsy studies comprising 18,902 examined pituitaries from 32 series, the mean prevalence of pituitary incidentaloma was 10.7 % (range 1.5 % - 31 %)2. Lesions were uniformly distributed between sexes and among adult age groups. Importantly, the prevalence of macroadenomas in autopsy series is <1%2. Some studies report slightly increased prevalence in the elderly population4, 5. Kastelan et al. suggested that an age-related decline in peripheral hormonal secretion could lead to compensatory feedback stimulation of gonadotroph cells and thereby stimulate the early stages of pituitary tumor development4.

The prevalence of incidentalomas in the sellar and parasellar region has increased with technological advances6-10. Earlier studies were performed using computer tomography (CT), which is considered less sensitive than magnetic resonance imaging (MRI) for detecting lesions of the pituitary. Pituitary incidentalomas detected during positron emission tomography (PET) scan have also been reported in clinical case studies and in retrospective series of patients with cancer11-15. MRI studies in unselected population report micro-incidentaloma rates of 10-38 %16, 17. Similar to autopsy series the percentage of macroadenomas is quite low – 0.2 % in CT series18 and 0.16 to 0.3 % in MRI studies19, 20. These data derived from normal populations or apparently asymptomatic patients contrast with the prevalence of clinically relevant pituitary adenomas which is closer to 1 case per 1064-120021, 22. It is clear that few of the incidentally discovered microadenomas in pathology and radiology series progress to macroadenomas2, 3. The proportion of macroadenomas, however, is higher in some neuroradiological series where imaging was performed in patients with non-specific symptoms/signs23-26. In the largest series of incidentally discovered pituitary lesions imaging was performed most often for investigation of headache (40%). Other indications included trauma, cerebrovascular accidents or transient ischemic attacks, sinusitis, cervical spine disorders, visual loss, and syncope23, 25, 27, 28.
Currently MR is the imaging modality of choice for detailed assessment of the majority of pituitary lesions, while CT has a supplementary role mainly for its advantages in the evaluation of bone changes of the sella and calcifications. The increasing use of high-field MRI allows for multiplanar high contrast images of the pituitary and its adjacent structures, thereby providing useful information for arriving at a differential diagnosis. Noise artifacts inherent to high-resolution scanning may pose additional challenges when interpreting acquired images.

Pitfalls in pituitary imaging

While individual practices vary from center to center, pituitary MRI studies usually include: pre-contrast T1 and T2-weighted spin-echo coronal and sagittal sections with thin slices. Coronal and/or sagittal T1-spin echo gadolinium-enhanced images are also often acquired. In order to gain the maximum amount of optimal clinically useful information, the following items should be obtained: use of high matrix size (512), coronal spin echo T1-weighted and fast spin echo T2-weighted images, sagittal and axial T1-weighted images (to fully evaluate the posterior pituitary) and careful use of gadolinium contrast agents. Properly performed imaging techniques may help distinguish the different lesions by assessing the size of anatomical structures and discovered masses by determining the topography and extent of the lesion and its extension, the presence of signal heterogeneity, and the accumulation of contrast, calcifications or liquid component. Ideally volumetric assessments can be helpful for followup of lesion progression, but these are often not performed in the routine setting when a sellar lesion is discovered by chance. While not used routinely, axial sequences can be of significant additional use in the differential diagnosis of certain sellar lesions. Diagnostic pitfalls can be avoided by using pulse sequences adapted for the evaluation of the sella and by recognizing artifacts – magnetic susceptibility, partial volume, chemical shift, or pulsatility. Occasionally some incidental finding may be variants of the normal pituitary.

The Small Sella
The inter-individual variability of the size of the sella turcica sometimes produces a pseudo enlargement of the pituitary on images where a normal-sized pituitary is visualized in a relatively small sella31,32. This normal anatomical variant can be mistaken for an enlargement of the content of the pituitary fossa and lead to an incorrect diagnosis of a pituitary mass such as isointense pituitary adenoma or “pituitary hyperplasia”. In adults, hyperpneumatization of the sphenoid sinus may be associated with a small sella since the pneumatization of the sinus may limit the depth of the pituitary fossa. In such cases the pituitary gland may project beyond the sellar aperture. A thick dorsum sellae, either pneumatized or consisting of fat and bone can decrease the anteroposterior pituitary fossa diameter. Furthermore, in adolescent females the presence of a small or narrow sella can increase the physiological convexity of the pituitary (Fig. 1). Therefore, in cases of an enlarged pituitary gland with normal T1 and T2 signals and normal enhancement after gadolinium injection, a small sella should be considered in the differential diagnosis, as should the degree of the pneumatization of the sphenoid sinus, the shape of the dorsum sellae and the width of the sella. Other possible conditions that may be associated with upward convexity of the pituitary gland include isointense holosellar pituitary adenoma and an isointense RCC, which are infrequent (Fig. 2). Although rare, the volume of a normal-sized sella can also be reduced by an unusually large inferior coronary sinus, a sellar spine, or a medial deviation of the internal carotid arteries (“kissing” carotid arteries) or trigeminal arteries (Fig. 3).

Physiological and secondary pituitary enlargement

Another incidental finding on neuroimaging is an increase of pituitary size following physiological hypertrophy of pituitary cells 33. A number of imaging studies of healthy volunteers reported sex- and age-dependent variations in size and contour of normal pituitary. In up to half of young women the superior pituitary contour is convex, although the size of the pituitary rarely (0.5%) exceeds 9 mm 34-37. The increase in height of the normal pituitary, generally observed in young-age or menopausal women, could be related to age-related changes of the hypothalamic-pituitary-gonadal axis. The decline in sex hormones levels is observed in
both females and males, but older men usually experience a slow decrease of gonadal function with aging and the difference in gonadotropin levels with advancing age is more pronounced in females \(^{38,39}\). Lactotrope hyperplasia during pregnancy, thyrotrone hyperplasia due to severe primary hypothyroidism or pituitary hyperplasia due to hypersecretion of releasing hormones (corticotrope-releasing hormone and growth hormone - releasing hormone) should also be ruled out when such diffuse pituitary abnormalities are revealed on MRI (Fig. 4) \(^{40-43}\). Recent reports suggest that a lack of sex-hormone feedback might induce development of pituitary hyperplasia in Klinefelter syndrome \(^{44}\).

Technical artifacts

A number of artifacts may pose difficulties for the correct interpretation of sellar and parasellar MRI \(^{30}\). They can easily mimic intrasellar lesions, in particular pituitary microadenomas. Partial volume artifacts occur when a 3 mm-thick cut includes parts of different anatomical structures such as, anterior pituitary gland and sphenoid sinus anteriorly, dorsum sellae posteriorly or intracavernous internal carotid arteries laterally. In such cases the average intensity of the different components of the cut section calculated by the computer can simulate an intrasellar tumor. Partial volume effects can be eliminated by coupling orthogonal projections or by using 1 mm- thick cuts. Magnetic susceptibility artifacts are responsible for geometrical distortion and localized signal intensity changes at the interface between anatomical structures with different signal intensities, predominantly in the case of a curved interface. Magnetic susceptibility artifacts are often present at the level of the sellar floor and are more pronounced on 3.0 Tesla MRI, but these can be accounted for with technical adjustments. Chemical shift artifacts and ghosting are related to the high signal of fat. They can compromise the visualization of the storage of vasopressin in the posterior lobe on axial T1-weighted sections when the dorsum sellae is fatty, particularly on 3.0 Tesla MRI. Fat saturation techniques can be useful in such cases. A prominent posterior lobe and its fossula hypophyseos sometimes can be mistaken for a posteriorly located pituitary adenoma on coronal T2-weighted images (Fig. 5). The topography of the posterior lobe itself, which is beyond the midline in about half of cases, is readily
visualized on non-enhanced axial T1-weighted images. Flux artifacts arise mainly due to pulsating internal carotid arteries and cerebrospinal fluid. They are more severe on 3.0 Tesla MRI and can blur or pollute the pituitary fossa or the subarachnoid spaces. All of these artifacts should be considered when clarifying the nature of incidental lesions in order to avoid possible mistakes in diagnosis.

Determining the nature of pituitary incidentalomas

Pituitary adenomas and RCC are the most common entities in patients with pituitary incidentalomas and account for up to 90% of all lesions.6, 27, 28, 45 Other etiologies are less frequent - other tumors, mostly craniopharyngiomas in 4.2-5.6% and cystic malformations in 2.9-5.2%46-48. It should be noted that these figures come generally from surgical series since definitive diagnosis is only possible after histopathological examination. The proportions of the two most common entities – pituitary adenomas and RCCs – also depend on the localization of the lesions. In cases of suprasellar lesions adenomas predominate while RCC are more common among intrasellar lesions.

The majority of incidental pituitary adenomas are small clinically non-functioning tumors. Secreting adenomas usually present with clinical symptoms of hypersecretion that facilitates their diagnosis, although subtle hormonal changes may not be clinically evident. In a recent study 77% of incidentally discovered pituitary adenomas were found to be non-functioning, 18% were prolactinomas, and 3% growth hormone secreting; the prevalences of different secretion patterns may be biased by the study population and the reason for pituitary imaging28. Many large series of pituitary incidentalomas exclude hyperfunctioning adenomas and the overall prevalence of different secretory types is, therefore, not well established. Moreover, some patients with hypersecreting pituitary tumors discovered incidentally have clinical manifestations that were occult at the initial examination25. Such incidentally found functioning adenomas are mostly prolactinomas. Other types of secretion are commonly thought to be infrequent. Unsuspected acromegaly can be revealed in some cases of pituitary incidentalomas28, 49. Subclinical Cushing’s disease occurred in about 4% of histologically confirmed
Distinguishing pituitary adenomas from other non-adenomatous lesions may be quite challenging. There are, however, some radiological characteristics that may provide clues to the diagnosis.

Solid lesions

The differential diagnosis of a solid mass in the sellar region should start with a pituitary adenoma. There may be areas of necrosis and hemorrhage with different signals on T1 and T2-weighted sequences. In cases of cavernous sinus invasion, the internal carotid artery usually is not affected. Intrasellar microadenomas (<10 mm) have some specific characteristics: lateralization inside the adenohypophysis, possible deformation of the sellar diaphragm and displacement of the pituitary stalk. Classically, microprolactinomas appear hypointense on T1-weighted images and hyperintense on T2-weighted sequences (Fig. 6), while many GH-secreting microadenomas can be iso- or hypointense on T2-weighted sequences. The enhancement after contrast injection is often minimal. About 5 to 10% of microadenomas are discovered exclusively on post-contrast images. Dynamic imaging with contrast is not always useful and may cause false positive results. In 50% of normal glands, the posterior pituitary is off the midline (Bonneville JF, Personal Communication). If only the early phase of dynamic imaging is considered (when only the posterior pituitary but not the adenohypophysis is enhanced) this can falsely mimic a pituitary adenoma (Fig. 7).

Meningiomas are the second most common solid tumors in the pituitary region. They arise from the arachnoid cells of the dura and can often mimic the clinical picture of non-functioning pituitary adenomas with headache, visual disturbances and hypopituitarism. Their imaging characteristic, however, often allow to be distinguished from other sellar lesions. They usually do not enlarge the size of the sella and normal pituitary tissue can be visualized under the tumor. Meningiomas are isointense in T1- and hyperintense in T2-weighted images and tumor enhancement is intense and homogeneous with a linear thickening of the dura called the
“dural tail” (Fig. 8) 47. The internal carotid artery is often compressed when the meningioma invades the cavernous sinus 55. Substantial narrowing of the carotid lumen resulting in cerebrovascular insufficiency is, however, a rare event 56.

Tumors arising from the neuro-hypophysis like pituicytoma and granular cell tumors must also be considered when assessing intrasellar masses 48, 53. These lesions are usually isointense compared with grey matter in T1 and sometimes displace the normal adenohypophysis anteriorly. Although originating from the posterior lobe or the infundibulum these tumors rarely cause diabetes insipidus. Taking into account that about 5%-10% of germ cell tumors are found both in the suprasellar and pineal regions, the finding of such bifocal lesions can aid in the differential diagnosis. The suprasellar region is sometimes the origin of malignant primary brain tumors like gliomas originating from the optic tract/hypothalamus or germinal cell tumors 46, 48, 57. Primary CNS lymphomas have also been described in the parasellar region 58. Malignant tumors, however, seldom remain silent for long and usually present with compression symptoms, hypopituitarism and diabetes insipidus. Their detection as an incidental finding would be extremely fortuitous. Some solid malignant tumors, especially breast and lung carcinomas, have been reported to metastasize rarely to the pituitary region. Metastasis usually affects the posterior lobe and presents with diabetes insipidus. In patients with a known primary tumor, likely metastatic lesions are not considered incidental findings. However, while searching for brain dissemination of a primary cancer, other non-metastatic pituitary lesions are more likely to be detected. Such cases can present serious clinical difficulties because metastatic lesions have similar appearance to pituitary adenomas. Some distinguishing features of metastasis, albeit non-specific, include loss of posterior lobe bright spot and thickening of the pituitary stalk, bone erosions and invasion of the sellar diaphragm in metastasis 46, 48. Positron emission tomography (PET) has also been suggested as being useful to differentiate pituitary metastases from benign lesions. Positive PET findings can be consistent with metastases in the pituitary rather than adenoma 59. There is significant overlap, however, between the
appearances of metastatic lesions, meningiomas, and adenomas on PET scan images; hence caution should be used in their interpretation \(^{13,14,60}\).

Chordomas and chondromas are rare bone destroying tumors that arise from the primary notochord and cartilaginous remnants, respectively \(^{48}\). They can mimic invasive macroadenoma with inferior expansion \(^{51}\). Occasionally the normal pituitary tissue can be distinguished above the tumor, which can help in the differentiation from invasive pituitary adenomas \(^{61}\).

Lymphocytic hypophysitis is another entity to be considered in the differential diagnosis of symmetric homogeneous enlargement of the pituitary. This autoimmune disorder usually affects women in the peripartum period and is characterized by frequent suprasellar extension, thickening of the stalk and intensive contrast accumulation (Fig. 9) \(^{62,63}\). Again, most of these conditions are associated with clinical symptomatology and would be exceptional findings if discovered fortuitously.

Cystic lesions

Incidentally found cystic lesions in the sellar and parasellar region need to be distinguished from a necrotic pituitary adenoma and non-pituitary entities such as RCC, dermoid and epidermoid cysts and cystic craniopharyngiomas. Necrotic macroadenomas usually lead to sellar enlargement and the walls of the tumor show distinct contrast uptake \(^{51}\). A fluid level may also be found.

RCC are malformations that originate from the remnant of the squamous epithelium of Rathke’s pouch and consist of a single layer of cuboidal or columnar epithelial cells filled with cystic components \(^{64,65}\). RCC occur mostly in adults and usually are small and asymptomatic and as such they are the most common cystic pituitary incidentaloma and can be found in up to 22 % at autopsy series \(^{46}\). Most of these lesions are intrasellar but they can also lie on the sellar diaphragm, as “an egg in an egg-cup” (Fig. 10). They can expand above the sellar region and may become symptomatic causing compression of the optic tract or pituitary dysfunction. The basal MRI signal of RCC is highly variable and depends on the content of the cyst, which can
be serous or mucinous. They are more frequently hyperintense on T1-weighted images. Characteristic of RCC are T2-hypointense intracystic nodules that are due to cholesterol and are observed in 70% of T1-hyperintense RCC. Usually the cyst wall does not enhance after contrast administration, except in cases of complications such as infection, hemorrhage or rupture (Fig. 11). Intrasellar RCC cause no or limited mass effects while pituitary adenomas may imprint the bony contours of the sella, compress the posterior lobe and displace the pituitary stalk.

About 50% of craniopharyngiomas occur in children and adolescents, but their age distribution has also another peak in the elderly. They arise from squamous cells of the remnants of Rathke’s pouch and can be predominantly cystic, predominantly solid or mixed in nature. Calcifications are present in two thirds of all cases and in almost 100% of cases in children. Although craniopharyngiomas are benign tumors they usually have an aggressive behavior and a tendency to infiltrate. Hence, they rarely remain asymptomatic and most commonly present with headache, visual disorders, hypopituitarism and diabetes insipidus. In children, however, these symptoms may not be recognized initially and diagnosis can be delayed. The appearance on MRI varies depending on the proportion of solid and cystic components, the presence or absence of calcification and the contents of the cyst. The solid portion of craniopharyngiomas usually appears isointense or hypointense on T1-weighted and hyperintense on T2-weighted sequences. The cystic part is hyperintense on T1-weighted sequences with a thin contrast-enhancing rim. Although calcifications are not specific they are very characteristic of a craniopharyngioma. In all patients with an incidentally discovered pituitary lesion and a suspicion of a craniopharyngioma both MRI and CT should be performed to establish a definitive diagnosis.

Dermoid and epidermoid cysts are other lesions that often arise in the midline in the sellar and parasellar region. They include epithelial elements resulting from incomplete separation of the neuroectoderm from the cutaneous ectoderm. Their imaging characteristics are non-specific and their differentiation from other cystic lesions may be difficult. Dermoid cysts usually contain fat components and are heterogeneous and bright on T1-images and hyperintense on T2
Epidermoid cysts contain keratin and are almost identical in image character to cerebrospinal fluid with no contrast enhancement. Arachnoid cysts are rare herniations of the arachnoid diverticulum through the sellar diaphragm and can be intrasellar or suprasellar. On MRI they appear as well-defined lesions that are isointense to cerebrospinal fluid on T1-weighted and T2-weighted sequences and do not enhance with gadolinium.

To treat or not to treat?

Once a pituitary incidentaloma has been discovered and a differential diagnosis made, the clinician is faced with a decision about what to do. The management of incidentally found sellar lesions depends on the suspected nature of the tumor (pituitary adenoma, RCC, craniopharyngioma, etc), its size and clinical symptomatology (visual and neurological disorders) and hormonal status (hypo-/hypersecretion). Thorough clinical examination should be performed for signs and symptoms of hyper- or hyposecretion that may have been overlooked, followed by hormonal evaluation. Close attention to normal and physiological variations and technical artifacts can help to avoid unnecessary surgical interventions.

Neurosurgery remains the treatment of choice for many secreting and non-secreting pituitary lesions causing visual abnormalities due to compression of optic chiasm and signs of tumor mass effect. Diabetes insipidus occurs infrequently in pituitary adenomas, whereas it is a common clinical manifestation associated with other pituitary lesions, particularly pituitary metastases. The age of the patient and their general health status are important issues that need to be incorporated into the choice of treatment strategy.

Medical therapy with dopamine agonists and somatostatin analogues can produce tumor shrinkage in the case of prolactinomas and acromegaly, respectively and these may provide important clinical improvements. Surgical management is usually also indicated in the majority of other lesions in the sellar and parasellar region like meningiomas, craniopharyngiomas and other less frequent tumors as well as large cysts when these are causing compression symptoms. Infiltrative lesions, however, like lymphocytic and granulomatous hypophysitis are largely
managed conservatively, except where symptoms are severe or progressive, where surgery or corticosteroids may be used. Primary lymphomas in the region are managed with chemother- and radiotherapy and rarely surgically, although stereotactic biopsy may be needed for accurate diagnosis.

As the vast majority of pituitary incidentalomas are non-functioning pituitary adenomas and most of these are microadenomas, the decision about their management is determined by their growth potential. The behavior of incidentally found pituitary adenomas has been studied by a number of separate groups worldwide. Based on current data regarding the natural history of small incidentally discovered non functioning adenomas, watchful waiting is considered an most appropriate strategy. The growth potential of non-functioning pituitary adenomas is strongly dependent on their size at diagnosis, with larger tumors having greater growth potential. In a systematic review and meta-analysis, Fernandez-Balsells et al reviewed the natural history of incidentalomas and non-functioning pituitary adenomas. In a group of 11 studies (patient number ranged from 50-289 per study), the authors reported a higher incidence of tumor growth in macroadenomas and solid lesions as compared with microadenomas and cystic lesions. Macroadenomas and microadenomas had incidences of tumor growth of 12.53 and 3.32 per 100 patient years, respectively. Although data quality was poor (due to small numbers of studies with heterogeneous designs), macroadenomas had a significantly higher incidence of new endocrine dysfunction (11.9 per 100 patient years) and visual field worsening (0.5 per 100 patient years), as compared with microadenomas. Microadenomas increased in size in 3.3 % of patients per year compared to 12.5 % for macroadenomas. In other detailed reviews, tumor enlargement occurred in 10% of microadenomas, with tumor reduction seen in 6% during 2.5-8 years of observation. In contrast, tumor growth in macroadenomas can occur in up to 24% of cases. Occurrence and worsening of clinical symptoms such as visual disturbances and apoplexy directly depend on tumor size and most frequently happen in growing tumors, although visual loss may be reversible in most cases. Macroadenomas are also the usual cause of hypopituitarism in patients with pituitary incidentalomas. The presence of partial or
panhypopituitarism varies greatly in published series (0-41% of macroadenomas). In cases of significant growth of pituitary adenomas during follow-up or development of compression symptoms such as visual field defects and vision abnormalities, surgical treatment must be strongly considered. Although surgery can improve hypopituitarism, further worsening of hypopituitarism due to surgery itself may occur.

Cystic lesions increase in size less frequently than solid tumors. During follow-up, 20% of 115 non-functioning adenomas enlarged over the course of 10–173 months, while only 5.3% of 94 probable RCC increased in size. Furthermore, more than 50% of tumors that decreased in size were cystic. Thus, RCC and other cystic lesions may stay stable without growth and might be safely followed up with careful laboratory and radiological evaluation.

The duration and periodicity of radiological follow-up also depends on tumor nature and size. Current consensus guidelines recommend performing a follow-up MRI scan six months after the initial incidental discovery for macroadenomas and after one year for microadenomas. When no tumor growth is observed, MRI should be repeated annually for macroadenomas and every 1-2 years for microadenomas for the next three years and less frequently afterwards if no growth occurs. Others have even suggested that no surveillance be implemented in non-functioning microadenomas less than 5 mm in size, although this approach could miss the rare lesions that expand aggressively. Baseline hormonal evaluation is warranted, both to establish whether any clinically relevant endocrine changes are present at diagnosis, and to provide a yardstick to assess any changes overtime. In asymptomatic patients with incidentally found microadenomas, the costs of evaluation can be significant. While data are not widely available for different countries, the experience of one U.S. center suggests initial evaluation costs >6000 US dollars per patient (not including follow-up assessments). Cost containment will require improved understanding of the growth potential of pituitary incidentalomas and adherence to existing guidelines/recommendations to avoid unnecessary expenses in long term follow-up, particularly of chronically stable small lesions.

For accurate follow-up evaluation of pituitary incidentalomas, particularly non-functioning adenomas, the question of MRI reproducibility is significant. Ideally, the follow up analysis...
should be performed at the same clinical center, using the same imaging protocols for more precise and easier comparison with previous images.

Conclusions

Increased availability of high-quality neuroimaging techniques has led to a rise in the detection of incidental pituitary lesions, and their evaluation is becoming more common in everyday endocrine practice. In the case of a fortuitously discovered sellar or parasellar lesion, the initial work-up should be focused on distinguishing pathological conditions from normal or physiological variants. A suggested diagnostic pathway is outlined in Figure 12. Since imaging characteristics provide valuable clues for the differential diagnosis, close collaboration among specialists in radiology, endocrinology and neurosurgery is required. The majority of incidentally found pituitary lesions turn out to be non-functioning pituitary adenomas or RCC and current data suggest that they can be managed conservatively in most cases by periodical MRI monitoring allied with simple clinical surveillance. Large or growing lesions, or pituitary lesions associated with hormonal or local symptoms, require active and regular follow up by multidisciplinary treatment teams.
References

60. Hodolic M. Role of (18)F-choline PET/CT in evaluation of patients with prostate carcinoma. Radiol Oncol 2011 45 17-21.

86. Igarashi T, Saeki N & Yamaura A. Long-term magnetic resonance imaging follow-up of asymptomatic sellar tumors. -- their natural history and surgical indications. *Neurol Med Chir (Tokyo)* 1999 **39** 592-598; discussion 598-599.

Legends

Figure 1. Small sella. Sagittal T1- weighted images show (a) small or flat sella, extensive pneumatization of sphenoid sinus and a bulging normal pituitary gland; and (b) small sella and thick dorsum sellae (arrow). Coronal T1- weighted image after contrast enhancement shows marked upward bulging of the normal pituitary gland with extensive sphenoid sinus pneumatization and a narrow sella in an adolescent girl (c).

Figure 2. Enlarged pituitary content of multiple origins in a female with intracranial hypotension after failed lumbar puncture. Sagittal (a) and coronal (b) T1- weighted, coronal T1-weighted contrast enhanced (c) and coronal T2-weighted (d) images reveal large T1-isointense RCC with an intracystic T2-hypointense nodule (curved arrow) associated with an enlarged inferior coronary sinus (thin arrows).

Figure 3. Vascular anomalies narrowing the sellar content. “Kissing” internal carotid arteries (arrows) on coronal T1-weighted image (a). Trigeminal artery piercing the dorsum sella on sagittal T2-weighted image (b).
Figure 4. Primary hypothyroidism in a 9-year-old child. Regular enlargement of a homogeneous pituitary gland on sagittal (a) and coronal (b) T1-weighted images.

Figure 5. Posterior lobe mimicking a pituitary lesion on coronal T2-weighted image (arrow) (a). Deep fossula hypophyseos on axial CT (b).

Figure 6. Microprolactinoma. The adenoma is T1-hypointense (a) and T2-hyperintense (b) on coronal images.

Figure 7. Normal dynamic imaging (a-c). Panel (c) shows magnification of normal delayed enhancement of the anterior pituitary simulating a pituitary adenoma (arrow). Panel (d): normal off-midline location of the posterior lobe (curved arrow) on an axial T1-weighted image.

Figure 8. Presellar meningioma. Sagittal T1- (a) and T2- weighted (b) sequences and contrast enhanced T1-weighted sagittal (c) and coronal (d) images demonstrate a meningioma inserted on the planum sphenoidale. It has stronger enhancement than the pituitary gland (marked with asterisk).

Figure 9. Lymphocytic hypophysitis. Coronal T1- (a) and T2- weighted (b) sequences and contrast enhanced T1-weighted coronal (c) and sagittal (d) images show enlarged sellar content abutting the optic chiasm (curved arrow). The lesion is T1-isointense, T2-hyperintense and becomes markedly enhanced after gadolinium injection. The dural tail is shown with arrows.

Figure 10. Characteristic pattern of asymptomatic mucoid T1-hyperintense RCC on axial T1-weighted image (a), located in the midline between the anterior and posterior lobes. A coronal T1-weighted image shows a RCC on the upper surface of the pituitary, as an “egg in an egg cup”.

Figure 11. RCC on coronal T1-weighted image after gadolinium injection. Panel (a) shows the usual c pattern: the cyst wall is not enhanced. Panel (b): Cyst wall enhancement of a complicated RCC.
Figure 12. Flow-chart for decision making in the management of pituitary incidentaloma.
Table 1. Differential diagnosis of pituitary incidentalomas.

<table>
<thead>
<tr>
<th>Category</th>
<th>Lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior pituitary tumours</td>
<td>Pituitary adenoma</td>
</tr>
<tr>
<td></td>
<td>Pituitary hyperplasia</td>
</tr>
<tr>
<td></td>
<td>Pituitary carcinoma</td>
</tr>
<tr>
<td>Posterior pituitary tumours</td>
<td>Pituitocytoma</td>
</tr>
<tr>
<td></td>
<td>Granular cell tumours</td>
</tr>
<tr>
<td>Benign parasellar tumours</td>
<td>Meningioma</td>
</tr>
<tr>
<td></td>
<td>Craniopharyngioma</td>
</tr>
<tr>
<td></td>
<td>Neurinoma</td>
</tr>
<tr>
<td></td>
<td>Lipoma</td>
</tr>
<tr>
<td>Malignant tumours</td>
<td>Glioma</td>
</tr>
<tr>
<td></td>
<td>Germ cell tumour</td>
</tr>
<tr>
<td></td>
<td>Primary lymphoma</td>
</tr>
<tr>
<td></td>
<td>Chordoma</td>
</tr>
<tr>
<td></td>
<td>Chondrosarcoma</td>
</tr>
<tr>
<td></td>
<td>Chondroma</td>
</tr>
<tr>
<td></td>
<td>Ependymoblastoma</td>
</tr>
<tr>
<td></td>
<td>Plasmocytoma</td>
</tr>
<tr>
<td></td>
<td>Pituitary metastases</td>
</tr>
<tr>
<td>Malformative lesions</td>
<td>Rathke’s cleft cyst</td>
</tr>
<tr>
<td></td>
<td>Dermoid</td>
</tr>
<tr>
<td></td>
<td>Epidermoid</td>
</tr>
<tr>
<td></td>
<td>Arachnoid cyst</td>
</tr>
<tr>
<td></td>
<td>Hamartoma</td>
</tr>
<tr>
<td>Inflammatory and granulomatous lesions</td>
<td>Lymphocytic hypophysitis</td>
</tr>
<tr>
<td></td>
<td>Granulomatous hypophysitis</td>
</tr>
<tr>
<td></td>
<td>Langerhans’ cell histiocytosis</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis</td>
</tr>
<tr>
<td></td>
<td>Sarcoidosis</td>
</tr>
<tr>
<td></td>
<td>Pituitary abscess</td>
</tr>
<tr>
<td>Vascular lesions</td>
<td>Aneurysms</td>
</tr>
<tr>
<td></td>
<td>Cavernous angiomas</td>
</tr>
<tr>
<td></td>
<td>Cavernous sinus thrombosis</td>
</tr>
</tbody>
</table>
Fig 3
211x158mm (72 x 72 DPI)
Fig 4
211x158mm (72 x 72 DPI)
Fig 5
211x158mm (72 x 72 DPI)
Fig 7
211x158mm (72 x 72 DPI)
Fig 10
211x158mm (72 x 72 DPI)
Figure 12
211x158mm (72 x 72 DPI)