ENOCRINE DILEMMA: Management of Graves Orbitopathy

by

Irene Campi*, Guia Vannucchi* and Mario Salvi

Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Cà Granda, Milan

Key words: Graves’ orbitopathy, Graves' disease, Cytokines, TSH receptor, IGF-1 receptor, Rituximab

Address for correspondence: Mario Salvi, MD
Graves’ Orbitopathy Unit, Endocrinology
Fondazione Cà Granda, IRCCS
Department of Clinical and Community Sciences, University of Milan.
Via Sforza, 35, 20122 – Milan, Italy
e-mail: mario@mariosalvinet.it
telephone +390250320609

This work was supported in part by MIUR, Roma and by Fondazione Cà Granda, IRCCS, Milano, Italy.

The Authors have nothing to disclose. No conflicting relationship exists for the authors.

* These Authors equally contributed to the work
Abstract

Management of GO must be based on a correct assessment of activity and severity of the disease. Activity is usually assessed with the Clinical Activity Score (CAS), while severity is classified, according to a EUGOGO consensus statement as mild, moderate-to-severe and sight-threatening. A myopathic and the chronic congestive forms are uncommon clinical presentations of GO. Restoration and maintenance of stable euthyroidism are recommended in the presence of GO.

In moderate-severe disease, steroids have been widely employed and posses anti-inflammatory activity, but about 20-30% of patients are not responsive and present recurrence. Some novel immunosuppressors have already been employed in clinical studies and showed interesting results, although the lack of randomized and controlled trials suggests caution for their use in clinical practice. Potential targets for therapy in GO are the TSH and the IGF-1 receptor on the fibroblasts, inflammatory cytokines, B and T cells and the PIK3/mTORC1 signaling cascades for adipogenesis. A recent open study has shown that tocilizumab, an anti-sIL-6R antibody, inactivates GO. Consistent reports on the efficacy of rituximab have recently been challenged by randomized controlled trials.

As the main goal of a treatment is the well-being of the patient, the therapeutic strategy should be addressed to better suit the patient needs, more than improving one or more biological parameters. The increasing availability of new therapies will expand the therapeutic options for GO patients and allow clinician to really personalize the treatment to better suit the patients' personal needs.
Graves’ orbitopathy (GO) is an autoimmune inflammatory disorder involving the orbital tissues. It is the most common extrathyroidal manifestation of Graves’ disease (GD) (1). Although the pathogenesis of GO is not yet clarified, immunological cross-reactivity of thyroid and orbital antigens in muscular, connective and adipose tissue is thought to play a key role (2). Different longitudinal studies confirm that spontaneous improvement or stabilization of eye symptoms and signs may occur when GO is mild (3-9). It is well known that GO has a self-limiting natural course, characterized by a phase of active inflammation of the orbital tissues, in which disease severity generally progresses, followed by a phase of stabilization and improvement of inflammation, as described by the “Rundle curve” (10,11) (Figure 1A). Regression of the inflammatory process may lead to fibrosis, preventing affected tissues from returning to their previous healthy, functional state. Anti-inflammatory therapy is indicated in the first phase, while rehabilitative surgery may be indicated in the second one (12) (Figure 1B). Thus, management of GO must be based on a correct assessment of activity and severity of the disease. In most European clinical centers, activity is usually assessed with the Clinical Activity Score (CAS) (13) (Table 1), while severity is classified, according to a recent consensus statement by EUGOGO as mild, moderate-to-severe and sight-threatening (14).

Controversies in the diagnosis of GO

A CAS score ≥3/7 at first examination or 4/10 on follow-up visits (Table 1) qualifies the patients for a diagnosis of active GO. If the disease is of moderate-severe grade, the patient may benefit from treatment with immunosuppressive therapies. There are, however, two clinical presentations of GO, a predominantly myopathic form, in which actual disease progression may not be correctly assessed with the CAS in the absence of soft tissue inflammation, and a chronic congestive form in which soft tissue changes due to orbital congestion may be equivocally assessed as signs of active inflammation.
Myopathic GO. This form is characterized by prevalent muscle involvement resulting in motility impairment with few or absent soft tissue inflammatory signs. In patients affected with myopathic GO, diplopia often represents the first manifestation of ocular involvement and causes remarkable disability (15). To date, diplopia is qualitatively classified as absent, intermittent, inconstant or constant according to the Gorman Score (16), while a quantification of muscle defect may be studied by the field of binocular single vision, according to the Goldman or arc perimeter (17). A reduction of motility in any direction greater than 8 degrees, in two subsequent ophthalmological examinations (1-3 months), is indicative of disease progression and accounts for one point of the CAS. This implies that recent onset myopatic GO can be progressive, although inactive according to the CAS. This clinical situation is distinct from the change (usually worsening) of muscle ductions observed later during the scarring phase of GO, likely reflecting fatty degeneration and fibrosis typical of “inactive” disease. In order to early identify progression in these patients with the myopatic form of GO, some Authors have recently suggested to use quantitative MRI parameters which have been shown to correlate with the changes of the CAS (18). This interesting approach nevertheless, needs further validation before using it in daily clinical practice.

Chronic congestive GO. Congestion of the superior orbital vein plays an important role in the inflammatory phase, as demonstrated by computed tomography (19-21) and color Doppler imaging studies (22-25). It has been suggested that in GO the success of the immunosuppressive treatment is the result not only of the effect on the autoimmune process but also on the reduction of orbital venous congestion. The impairment of superior orbital vein flow during the inflammatory phase of GO may otherwise persist despite an effective outcome of immunosuppressive treatment (26). In these patients, ophthalmological signs of the persistent orbital vascular congestion may show similarities with some of those observed in active GO. Characteristic diagnostic criteria for the chronic congestive form may be eyelid edema, eyelid and conjunctival redness, chemosis and
caruncle edema associated to disease duration > 12 months, orbital CT scan evidence of increased muscle and adipose tissue volume and unresponsiveness to immunosuppressive therapy (26).

If not properly recognized, the myopathic and the chronic congestive forms of GO may bring about inadequate treatments, from either a too long “wait and see” approach in the former group of patients or unnecessary therapy in the latter. Disease duration is perhaps the most useful parameter for the differential diagnosis of these two particular subgroups of GO patients: as previously reported by Terwee and colleagues, GO duration > 16 months was a significant predictor of no change and no response to therapy (27). A very recent study has shown that the increase of fibroadipose tissue, resulting in increasing proptosis and orbital fat volume mimicking disease progression, is observed in untreated patients with a longer duration of disease (28). At the first clinical examination of a patient, it is very important to precisely assess the onset of the first symptoms and the diagnosis of disease, as this can provide essential contribution to the classification of GO. Indeed, the recent onset of diplopia in a purely myopathic form, allows to hypothesize progressive GO. On the other hand, the presence of signs of orbital vascular congestion in a disease of long duration, perhaps in patients with previous immunosuppressive treatment would be suggestive of chronic congestive disease. Once the diagnosis of inactive disease is made, surgery, orbital decompression and squint surgery, are the only effective treatment to improve both congestive signs, by increasing the venous outflow of the orbit, and orthotropic vision (29).

Current guidelines for treatment of thyroid dysfunction in patients with GO.

Prompt restoration and maintenance of stable euthyroidism are recommended in the presence of GO, since both hyperthyroidism and hypothyroidism have a negative impact on GO (30, 31). The optimal treatment of hyperthyroidism when GO is present is, however, a challenging dilemma (32). Table 2 summarizes the current evidence from the literature. Antithyroid drugs per se do not appear to negatively affect GO once euthyroidism has been restored. This is suggested by two prospective studies in which most patients during antithyroid drug treatment had stable GO (33, 9), with only a
few cases of progression or improvement compatible the natural history of the disease. GO may improve with thyronamides only as a consequence of the restoration of euthyroidism (31) and the reduction of serum levels of TSH-receptor antibodies (34). In addition, whichever regimen of antithyroid drug administration (titration vs block and replace) is employed, no difference on the GO outcome is observed.

Thyroidectomy, in particular near-total thyroidectomy, has been reported to be an effective treatment for hyperthyroidism (35). Scant literature exists on the effects of surgery on the course of GO, due to the difficulty to enroll patients in studies in which surgery is planned to be the first line therapy. One randomized clinical trial showed that the rate of *de novo* occurrence or progression of GO among patients submitted to thyroidectomy or medical therapy was similar, but significantly lower than that observed after radioiodine (RAI) treatment (36).

RAI is an effective treatment for hyperthyroidism and represents the first-line treatment of hyperthyroidism in North-America (35, 37). The majority of patients develop hypothyroidism within 1 year from RAI administration (38), although hypothyroidism may occur earlier, in some patients even one month after treatment. While antithyroid drugs and thyroidectomy do not seem to affect the natural course of GO (36, 39), RAI treatment has been shown to be associated with worsening or *de novo* occurrence of GO in 5-15% of patients, mostly smokers (39-41). Since 1989, it has been proposed that a short course of systemic corticosteroid treatment may prevent RAI-induced exacerbation of GO. Steroid prophylaxis been carried out using very low doses of prednisone (0.2 mg/kg bodyweight), given 1 day after RAI therapy and gradually tapered down and withdrawn after 6 weeks, has been shown to be effective in a study in Italy (42) but not in a recent study on Japanese patients (43). Alternatively, methylprednisolone can be administered intravenously at the dose of 500 mg weekly for two weeks followed by another two weekly infusions of 250 mg (cumulative dose of 1.5 g) (40). The onset of hypothyroidism should be promptly assessed and corrected, since late correction of post-RAI hypothyroidism has been shown to represent a relevant risk factor for reactivation or *de novo* occurrence of GO (44, 45). Finally,
RAI can also be administered after surgery to attain total ablation of thyroid tissue, which might be beneficial for its complete removing of thyroid antigen(s) and autoreactive T lymphocytes likely involved in the pathogenesis of GO (1). Indeed, few studies have suggested that total thyroid ablation is more frequently associated to GO improvement than surgery alone (46-50). According to the recently published Italian guidelines on treatment of hyperthyroidism in patients affected with Graves’ disease and GO (51), total thyroid ablation may be suggested when trying to achieve earlier inactivation of GO that can be followed, when needed, by prompt rehabilitative surgery.

The optimal therapeutical approach for thyroid dysfunction in patients with GO remains a dilemma and decisions in most cases still rely on expert endocrinologists’ opinion, based on the age of patient, the degree of eye involvement and last, but not least, the patients’ expectations.

Treatment of moderate-severe orbitopathy

Immunosuppressive therapies exert their beneficial effects only in the active phase of GO, but not in burn-out disease where only rehabilitative surgery may improve the patient’s eye appearance and function. In active progressive disease, medical treatment (immunosuppressive and/or anti-inflammatory) has the objective to reduce inflammation of eye muscles and orbital fibroadipose tissue, which may eventually reduce the need of significant subsequent rehabilitative surgery (52). According to a EUGOGO consensus paper patients classified with moderate to severe GO usually have one or more of the following clinical signs: lid retraction ≥2mm, moderate or severe soft tissue involvement, exophthalmos ≥3mm above normal for race and gender, inconstant or constant diplopia (52).

Glucocorticoids

High-dose systemic glucocorticoids (GC) are currently the first-line treatment of active moderate-to-severe GO (3, 52, 53). Several randomized clinical trials found a response rate of approximately 70-80% in patients treated intravenously and approximately 50-60% in those treated orally (53, 54).
In vitro studies have shown that GC decrease the production of glycosaminoglycans by orbital fibroblasts, down-regulate some cytokines and antibodies secretion, modulate T and B cells functions, and decrease trafficking of neutrophils and macrophages at the inflammation sites (14, 55) (Figure 2). Treatment effectiveness much depends on inter-individual variability, but this does not seem to be related to polymorphisms of the GC receptor (56).

Intravenous pulsed methylprednisolone is more effective (14, 46, 57, 61) and has a better safety profile compared with oral prednisone (60-65). Different treatment schedules have been used, with cumulative doses ranging from 4.5 to 12 g and occasionally associated with oral GC interpulse or at the end of the protocol (3, 14, 54-58). A recent multicenter randomized EUGOGO study, has shown that a cumulative dose of 7.5 g of methylprednisolone is more effective than intermediate or lower doses (5 g or 2.25 g, respectively), although it is associated with more frequent adverse events (65).

In particular, the high dose regimen has a more significant and positive impact on eye muscle motility, compared to lower doses. Therefore a high dose regimen may be used in more severe cases of GO while an intermediate dose (5 g) regimen is recommended when patients have more moderate disease. In a recent paper, Vannucchi et al. (56) observed that in up to 70% of patients GO becomes inactive after the first 6-8 weeks of intravenous GC treatment, without subsequent disease relapse. These findings suggest that in these patients steroids may be tapered off more rapidly with equal efficacy and better tolerability, when compared to a full course of therapy. When deciding for therapy with intravenous methylprednisolone a total cumulative dose of 8 g should not be exceeded.

Morbidity and mortality of GC therapy in GO patients have been estimated to 6.5 and 0.6%, respectively (63). Acute liver failure and cardiovascular events associated with GC administration may be fatal (56, 66-70). A marked increase of liver enzymes, often asymptomatic, is the most common adverse observed (71) and may be caused by a direct, dose related toxic effect of IVMP on hepatocytes. Preexistent viral hepatitis may be a risk factor for liver damage, whereas data on coexistent liver steatosis or diabetes are conflicting (67, 68). Autoimmune hepatitis may also occur during IVMP treatment (67, 68). Screening for virus markers and autoantibodies and clinical
monitoring is suggested when deciding for high dose IVMP therapy, in order to prevent complications (64). The concurrent use of statins has been shown to potentially induce live damage in patients undergoing intravenous GC therapy for GO (72). Therefore we suggest to consider temporary withdrawal of these medications at the time of steroid therapy, if the patient’s clinical situation allows.

The major limitation of GC therapy is that 20-30% of patients are poorly responsive or unresponsive at all and that approximately 10-20% of patients present with disease relapse after drug withdrawal (65). A recent retrospective study has shown that responsive patients usually have inactivation of GO as early as 6-8 weeks from the beginning of GC therapy, while those who do not respond may be otherwise switched to other immunosuppressive treatments, alone or in combination with steroids (56).

What to do if glucocorticoids fail and moderate-to-severe GO is still active?

The management of patients in whom intravenous GC therapy gives only partial or inadequate response or of those with disease recurrence is a major challenge (57). There is no definitive agreement on how to treat these patients and the decision about a second line treatment of active moderate-severe GO is based more on experts’ opinion than on clinical evidence, due to the limited studies in the literature. Firstly, such patients ought to be referred to specialized centers, since they are more prone to develop complications. Secondly, steroids may be administered in combination with other therapies, subsequently to their initial failure as monotherapy.

Combination therapy of oral GC and orbital radiotherapy could be considered an alternative, especially in the presence of muscle involvement and diplopia and the two therapies have been shown to have synergistic effects (73, 74). Orbital radiotherapy has been shown in randomized clinical trials to be effective in improving diplopia (75, 76), with the exception of one randomized trial that has questioned its efficacy (77). In general, the administered dose is 20 Gray (Gy) per orbit fractionated in 10 daily doses over two weeks (78), but also 1 Gy per week over a 20-week period.
was shown to be equally effective and better tolerated (79). Irradiation therapy may induce mild and
transient exacerbation of ocular inflammation that can be controlled by the concomitant
administration of low dose GC (3, 80), while reports on long-term safety have been reassuring (81,
82). To date there is no evidence that intravenous GC associated to orbital radiotherapy is more
effective than steroids alone, but this interesting hypothesis will be challenged in a randomized
multicenter clinical trial conducted among EUGOGO centers.

Oral GC (starting dose, 0.5 mg/kg body weight of prednisone) have also been administered in
combination with cyclosporine (5 mg/kg body weight) for 3 months (83, 84), to follow the initial
intravenous GC treatment. Combined treatment with cyclosporine has been shown to allow
reduction of GC doses and improvement of efficacy by maintaining therapy for a longer time.

These combined modalities of treatment imply retreatment with GC, a solution that may be
proposed to patients with disease relapse, but hardly to non-responders to initial GC therapy.
Furthermore, in patients with more severe GO undergoing a high dose intravenous GC regimen
with a total cumulative dose of GC of 7.5 g, safety concerns would prevent the clinician to plan for
more steroids even if the patient had disease relapse after a significant therapeutic response to the
initial GC treatment. It is also worth considering that some patients may elect not to repeat a GC
based regimen, if they experienced a poor outcome with the first one. Are there real alternatives to
immunosuppression with steroids in GO?

Novel targeted therapeutic modalities.

Over the past decade, a series of studies have partly uncovered the mechanisms involved in GO
pathogenesis, in particular those leading to cytokines-driven inflammation and increased retro-
orbital adipogenesis. Based on these findings, evidence has emerged for treating progressive GO by
directly targeting the specific immune and inflammatory processes reactions that results in orbital
tissue expansion and remodeling occurring in GO.
The potential property of novel immunomodulating agents is a disease-modifying and not just an anti-inflammatory effect (85). Figure 2 shows the antigens that may be specifically targeted in GO, the TSH receptor (TSH-R), the IGF-1 receptor (IGF-1R) and platelet-derived growth factor (PDGF)-receptor, expressed on the fibroblasts, several cytokines which have been shown to be involved in disease progression and molecules regulating the immune function of antigen presentation, such as B and T cells (Figure 2).

Most of these compounds are not yet available for clinical use in GO and only a few of those have been employed in human studies and have shown to be potentially useful for treating patients. We will mainly focus on findings from clinical studies, which in most cases are open label studies with only few randomized controlled studies.

Low molecular weight TSH receptor ligands.

Interesting low molecular weight TSHR ligands have been synthesized over the last few years. They interact with the TSH receptor as: 1) TSHR agonists (that activate receptors), 2) neutral antagonists (that inhibit receptor activation by agonists), and 3) inverse agonists (that inhibit receptor activation by agonists and possess constitutive signaling). These molecules are studied for potential treatment of both GD and GO, but have been tested so far only in vitro on thyrocytes (86) and orbital fibroblasts (87) (Figure 2).

Targeting the IGF-1 receptor

The IGF-1R was shown to be co-expressed with the TSH-R on orbital fibroblasts and fibrocytes (88), and in vitro blocking of the IGF-1R attenuates TSH-dependent signaling (89). Serum IGF-1R autoantibodies have been detected only in subgroups of patients with GO (90) and do not seem to occur with significant prevalence in active GO. A phase two multicenter, placebo-controlled randomized clinical trial, conducted in the U.S. and in Europe (91) is currently investigating a specific human monoclonal antibody that binds to the extracellular-subunit domain of IGF-1R.
(Teprotumumab, RV 001, R1507). Binding of Teprotumumab to IGF-1R on fibrocytes was shown
to attenuate TSH-dependent IL-6 and IL-8 expression and Akt phosphorylation (89) (Figure 2). The
ongoing study will hopefully provide the background for potential use in current clinical practice.

Modifiers of orbital tissue remodeling.

Inhibitors of PIK3/mTORC1 cascades have been shown in an vitro model of GO to reduce
hyaluronan accumulation and adipogenesis (92). While trials with first-generation inhibitors, such
as wortmannin, LY294002, or rapamycin and its derivatives have been stopped because of
significant untoward effects, second-generation inhibitors are currently being used in clinical trials
on patients with refractory cancers (93), but to date no trials have been planned in autoimmune
thyroid disease.

A PDGF-BB isoform of the platelet-derived growth factor (PDGF)-receptor has recently been found
expressed and increased in the orbital tissue of GO patients (94-97). Its signaling on orbital
fibroblast can be blocked by tyrosine kinase inhibitors, such as imatinib mesylate, nilotinib and
dasatinib, that has been shown to decrease in vitro the mRNA expression of hyaluronic syntetase 2
(HAS-2) and IL-6 and IL-8 cytokines in orbital tissue from active GO (96) (Figure 2). These
compounds are invariably associated to serious side effects and this may impact on their further
development as effectively available therapeutic agents for GO.

Targeting cytokines/ chemokines with monoclonal antibodies.

The active phase of GO is driven by pro-inflammatory and Th1-derived cytokines, such as IL-6 and
IL-1, and IFN-gamma-induced chemokines, such as CXCL10, whereas Th2-derived cytokines,
including IL-4, IL-5 and IL-10, prevail in the disease inactive phase (98).

TSH receptor antibodies have been shown to increase the expression of IL-1 receptor on orbital
fibroblasts (99) synergistically with a smoke extract (100). Anakinra, a interleukin-1 (IL-1) receptor
antagonist, may antagonize this mechanism although this hypothesis has not been challenged in a clinical trial.

Most TNF inhibitors (etanercept, infliximab, adalimumab) have been widely and successfully used in autoimmune rheumatic diseases. Etanercept, a recombinant fusion protein of extracellular ligand-binding portion of the human TNF receptor, binds TNF and blocks the interaction with its receptors, thus preventing inflammatory responses. A small trial with etanercept was conducted on ten patients with active moderate-severe GO in 2005 by Paridaens et al. (101) resulting in improvement of soft tissue inflammatory signs in six patients, but no advantage over therapy with GC, in terms of overall efficacy and side effects.

Activation of the IL-6/sIL-6 receptor system has been shown in active GO by Salvi and colleagues (102). An interleukin IL-6 receptor antagonist, tocilizumab has been successfully employed in rheumatic disease (103) and recently in an open clinical trial on 18 patients with GO refractory to GC treatment (104). Disease activity improved in all patients, proptosis values decreased in 72% and ocular motility improved in 83%. One patient who had acute optic neuropathy was able to avoid orbital decompression. Currently, a placebo controlled trial is testing the efficacy and safety of tocilizumab in patients with moderate to severe or sight-threatening GO, who did not respond to treatment with pulse steroids (Phase III clinical trial, randomized, placebo-controlled, double-blind, parallel groups and multicenter study. EUDRACT 2010-023841-31) The results of these study are expected in the Spring of 2016.

The detection of increased serum BAFF concentrations in patients with either Hashimoto’ thyroiditis (105) or Graves’ disease, with and without orbitopathy (106), suggests that targeting BAFF may be an option in the management of Graves’ disease. The therapeutic efficacy of Belimumab, a monoclonal antibody against BAFF, has been challenged so far in patients with RA and SLE with moderate clinical benefits, mostly in SLE. A randomized controlled trial of belimumab compared to intravenous steroids in active GO will start at the beginning of 2016 (
EUDRACT: 2015-002127-26). This treatment might affect the secretion of TSH receptor autoantibodies as well as the B cell-driven immune mechanisms involved with GO (Figure 2).

Rituximab

Following a first report on successful treatment of one patient with moderate-severe GO (107), several non-controlled studies on the effects of rituximab (RTX) in GO have appeared in the literature (108). More recently two randomized controlled trials in moderate-severe GO comparing RTX to placebo (109) and to steroids (110), respectively, have just been published. Although these trials provide conflicting results, most non-randomized studies suggested that RTX might be beneficial for moderate-to-severe and active GO (110).

RTX is a mouse-human monoclonal antibody that targets CD20. This a human B lymphocyte-specific antigen is expressed on B cells in the various stages of maturation, but not on plasma cells (111). To date, it has been approved for clinical use in rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated (ANCA) vasculitis. The rationale for using RTX in GO is the potential blockade of the generation of TSH receptor antibodies and of inflammatory cytokines. RTX may also block B cells antigen presentation fairly rapidly upon depletion (112), but not the interaction between B and T cells, without therefore producing an effect on specific pathogenic autoantibodies (113) (Figure 2).

To date, clinical studies have shown that RTX can be employed in patients with active moderate-severe GO either as first line treatment or when IVMP therapy fails (114-119).

Efficacy and dosing of RTX in GO

In earlier reports (107, 114) RTX has been employed in patients with active steroid-resistant GO. In an open study RTX has subsequently been used as a first line therapy in previously untreated patients (115). Disease inactivation at 24 weeks and lack of disease relapse up to 18 months of
follow-up was observed, while GO is generally reported to relapse in 10-20% of patients after IVMP (65).

More recently, two randomized clinical trials have studied the efficacy of RTX in patients with active moderate-severe GO. Salvi et al. (110) have randomized 32 patients with either RTX or IVMP, and studied the decrease of the CAS as a primary end point at 24 weeks. The CAS improved in 100% of patients after RTX compared to 69% after IVMP (P<0.001). Disease never relapsed in patients treated with RTX, but in five after IVMP. Neither treatment was effective on proptosis, palpebral aperture and the total eye score for severity, but RTX proved to be more effective than steroids on motility and quality of life. The results of this work seem to suggest that RTX may act as a disease modifying therapy, compared to steroids. Stan and colleagues (109) were not able to find RTX effective in treating active GO, when compared to placebo. The study included 21 patients, of whom two developed optic neuropathy. Reasons for the conflicting results of these two studies are unknown, but differences in the patients' population included may have had an important impact on the treatment outcomes. A much longer GO duration (11.2 vs 4.5 months) in the trial of Stan et al. may have resulted in treating patients with more congestive than active, inflammatory disease. A greater number of patients previously treated with steroids (40 vs 19%) and a lesser degree of motility involvement (mean diplopia score 2 vs 3.5) was in fact included in their study.

Failure of RTX treatment and subsequent progression to acute DON, similarly to the two patients herein described (109) was previously reported (120). One possible explanation is that subclinical DON was already present in these patients at the time of therapy and that the release of cytokines induced by RTX might have resulted in increased intraorbital edema with optic nerve compression.

To date, RTX has been employed in another ten patients with DON (116, 118, 121] and has induced significant improvement of vision. We therefore suggest caution in employing RTX in very severe GO, particularly if subclinical DON is suspected, until randomized controlled trials will provide evidence of its superiority over standard treatment with high dose IVMP.
Optimal dosing schedules of RTX in GO are undetermined due to the lack of randomized trials. The infusion of 1000 mg twice, with a two week interval, has been employed as the standard treatment of RA and other autoimmune diseases. This dose has been initially used in most open studies (115, 118) and in case reports (107, 114) in patients with GO. Rapid and complete peripheral B cell depletion following very low dose (100 mg) RTX was shown in a study by Salvi et al. (112). These patients presented a rapidly occurring orbital tissue edema that spontaneously resolved within 60-90 minutes. Interestingly, these patients had complete GO inactivation within a few weeks, and therefore were cured with a RTX dose about 20 times lower than the standard dose suggested in systemic autoimmune disease. In addition, a dose finding analysis in the clinical trial of Salvi et al. has shown the efficacy of a single 500 mg RTX dose when compared to two doses of 1000 mg (110).

Side effects of rituximab

Studies addressing dose/response relationship in relation its potential impact on the safety of RTX therapy are lacking. A recent meta-analysis of randomized studies has shown no significant differences in the primary clinical outcomes in RA when 1000 mg twice were compared to 500 mg twice, two weeks apart (122). Lower RTX doses also implies a significant reduction of treatment costs in chronic disease and the incidence of the initial infusion reactions, commonly described due to the chimeric nature of RTX. These reactions may be present in 10-30% of patients at first infusion and can be severe, but reversible (123). The underlying mechanism is release of pro-inflammatory cytokines from macrophages, monocytes, lymphocytes and NK cells. Infections have been reported as major side effect mostly due to the hypogammaglobulinemia resulting from repeated RTX doses, although in recent large retrospective studies in patients with multiple autoimmunity severe infections were more frequently associated to treatment with steroids and other immunosuppressive agents than to hypogammaglobulinemia (124). The rare occurrence of progressive multifocal leukoencephalopathy (PML) has been reported in patients after RTX,
although all of these patients had previously been treated with other immunosuppressive therapies including cyclophosphamide, azathioprine and even steroids, oral prednisone or intravenous steroids (125).

Treatment of sight-threatening ophthalmopathy

Sight-threatening GO, known also as dysthyroid optic neuropathy (DON), is due to either compressive optic neuropathy, caused by severe hypertrophy of eye muscles at the orbital apex, or severe corneal damage resulting from severe corneal exposure caused by excessive proptosis of the ocular globe and severe orbital congestion. In general, DON accounts for about 3-5% of all cases of GO and cigarette smoking, the male gender, restrictive strabismus, and rapidly progressive GO are considered risk factors for its development (73, 126). The diagnosis of DON is often challenging, in particular in more subclinical forms in which the progression to overt forms is not always straightforward. A survey among EUGOGO members in 2007 found that optic disc swelling, impaired color vision and CT scan evidence of apical crowding, with potential compression optic nerve, are the most useful predictive features (126). When present, optic disc swelling is very specific for DON, but patients may also have normal appearance of optic nerve due to the combination of edema and optic nerve atrophy.

Standard therapy for DON is urgent surgical orbital decompression, although a few studies have shown that as many as 40% of patients may respond to a course of high dose IVMP within 1-2 weeks from the initial signs of visual deterioration (127, 128). The first line treatment of DON should be a cycle of high dose IVMP, either 500 mg or 1000 mg daily for three consecutive days, repeated one week later. An accurate clinical ophthalmological examination at two weeks is required to assess response and recovery of normal vision. At that point, this therapy may be continued with weekly IVMP pulses, up to a cumulative dose of 8 g, if GO is still in the active phase (127, 128). Some patients improve slowly, and the extent to which a full recovery of optic
nerve function is attained is currently not known. Urgent orbital decompression is mandatory if patients do not respond to IVMP or when such treatment is contraindicated (125, 126).

Outcome of treatment and patient's satisfaction

GO has great influence on the quality of life of affected patients, especially those with some degree of functional impairment such as diplopia or oppressive pain due to chronic orbital congestion. In particular, double vision severely affects the patients’ quality of life, as they experience difficulties in reading, driving, and in daily working activities.

Medical treatments (immunosuppressive/anti-inflammatory) are beneficial only in the active phase of the disease with the objective to decrease inflammation and reduce progression of disease severity and, consequently, the need of subsequent rehabilitative surgery. The main goal of corrective surgery is to improve visual function, preserve the cornea, reduce the eyelid retraction and the orbital congestion resulting from the expansion of the orbital content associated with GO. The optimal surgical treatment should be tailored to the patient specific needs, in particular to the reduction of the degree of residual disease, to the anatomical characteristics of the orbit and to the impact of GO on patients’ quality of life.

De novo occurrence or worsening of diplopia is the most frequent complication of orbital decompression, particularly when the orbital floor is removed (130). The overall prevalence of post-operative diplopia in primary gaze is around 20% (131, 132) and may require additional surgery for strabismus. The aim of eye muscle surgery is to align the eyes and to restore single binocular vision in primary and reading positions. In order to achieve this goal, multiple operations may be necessary. However, the persistence of diplopia in extreme upgaze is common, but it is usually well tolerated with a negligible effect on overall visual function (133). Eyelid surgery is generally the last step of rehabilitation and its aim is the correction of residual eyelid malpositions after medical treatment or orbital decompression (133).
According to a recent survey, the satisfaction of GO patients with therapy is often insufficient. It has been estimated that about 30% of patients attending a thyroid-eye clinic and nearly the half of those attending a non specialist clinic, are not fully satisfied with the treatments they have received. This suggests firstly, that the late referral of patients to a joint thyroid-eye clinic may positively affect the final outcome of the disease (134) and secondly, that although medical and surgical techniques have improved over time, GO still has a marked negative effect on the patients' quality of life even many years after treatment and that should be considered a chronic disease (135). This is probably due to the fact that the face is the seat of recognition for a human being and living with a change in the appearance, as a result of any pathological condition, is always a challenging task (136).

Measurement of quality of life in GO

The concept of quality of life encompasses different aspects of physical and mental health, including health risks, functional status, social support, and socioeconomic status (137-139). For this reason, the quantification of quality of life has become of increasingly important in health care. The most common strategy for measuring quality of life consists in the administration of questionnaires or interviews, which investigate the patient’s personal feeling about the disease or the therapy (140). A disease specific questionnaire (GO-Qol) was developed by Terwee et al. in 1998 (141) and was the first instrument designed specifically to measure HR-Qol in patients with GO. It consists of 16 questions focusing on two specific subscales: 8 questions explore the visual impairment due to decreased visual acuity and/or diplopia; the remaining 8 questions describe the psychosocial effects of facial disfigurement. The use of GO-Qol has several advantages: firstly, it is simple, as the score is easy to calculate, self administered and reproducible (142); secondly, the GO-Qol strongly correlates with the severity of GO manifestations, and to a lesser extent, with disease activity (140) (Figure 1C). Thirdly, the score is a reliable measure of the disease changes over time (142) or as a consequence of a medical (143) or surgical (144) treatment. In this context, a
mean change of at least 6 points on one or both subscales suggests a significant change in daily functioning. For more aggressive therapies, a change of at least 10 points is usually considered as the minimal clinically relevant difference (143). The GO-QoL has been validated in different populations (145-148) and translated in 15 different languages. For these reasons, QoL has become also suitable as an outcome measure of therapeutic response in RTC trials, and an improvement of GO-QoL has been shown in patients responsive to therapy.

In patients undergoing surgical treatments, the GO-QoL score increases significantly for both visual functioning and appearance after the first strabismus surgery in GO-patients, showing the highest improvement for visual functioning-related questions. No differences were found in the QoL in patients previously submitted to orbital decompression compared to those who only underwent squint surgery (144). Medical treatment yields more conflicting results. Compared with oral steroids, IV methylprednisolone (IVMP) has been associated with a significantly higher improvement either in the visual or in psychosocial functioning (5) (Figure 1C). Conversely, in a recent study comparing IVMP and rituximab, the analysis of the GO-QoL has shown significant improvement in IVMP patients for the appearance scale, but not for the visual functioning scale, while rituximab was associated with an improvement in both scales (110).

These conflicting results may be addressed by studying the degree of the improvement of GO-QoL also considering the different therapeutic protocols and the different degree of orbital involvement prior to therapy. In addition, a statistical correction for age, gender and socio-psychological background, must also be considered. Despite these limitations, it has been suggested that the routine administration of the GO-QoL in daily clinical practice is likely to improve the quality of care and to identify patients who need further psychological support (149).

These psychological implication of GO may also be further studied by means of more specific questionnaire. In 2005, Yeatts and collaborators (140) developed a questionnaire of 105 questions investigating four areas (general and mental health; self-perception and social functioning; general visual function; specific visual function) in relation to GO. They found that GO patients had a lower
score for all measures of quality of life when compared to a control group. In particular, in GO patients experience difficulties in the physical and mental components, in the self-perception and social desirability. Although the results were not age or gender-specific, women appeared to have a stronger decline in self-perception, compared to men. When compared with other visually impaired groups, GO patients had a score similar to those of patients with diabetic retinopathy or macular degeneration.

When measured with a questionnaire assessing general mood, such as the Medical Outcomes Study-24 (MOS-24), GO patients scored worse than controls or other groups of patients with chronic diseases as heart failure, diabetes and emphysema (150). As depression and anxiety have been associated with GO (151), it has been suggested that psychological counseling or, when necessary, referral to a psychiatric service should be offered to GO patients (152) in order to improve patients' quality of life. Consistently with this hypothesis, in a study on 25 GO patients (153) Estcourt et al. showed an alteration of personality as a direct consequence of the physical changes associated with GO. In particular, the occurrence of frustration and depression, the concern on the potential effects of GO on job security and career progression, and anxiety have a great impact on the patients’ coping strategies and even on the interactions with healthcare professionals. Referral to a psychologist may be beneficial in selected patients, similarly to what reported for other diseases causing physical disfigurement (154). However, it has been estimated that about 75% of patients with GO felt they did not receive significant professional support for their psychological problems (153), suggesting that this issue is often overlooked by clinicians.

Patients with GO are also often involved with an important and life-affecting occupational impairment. In a survey on 192 workers affected with GO, nearly 20% of patients was unfit to work for a 1 month, while 3% for 4–6 months (155). The main determinants of working disability, and the consequent impaired earning capacity, are eye muscle motility disorders, while proptosis does not seem to influence the occupational status. This suggests that functional impairment plays a greater role in disability than cosmetic implications (156). The occupational impairment has
significant economic consequences of public health relevance and for this reason preventive care and rapid rehabilitation should be offered to GO patients (155).

Measurement of GO patients satisfaction

Rumsey et al. observed that patients with a high level of frustration and depression were often disappointed with the final outcome of GO therapy, especially because they seemed to have unrealistic expectations of the outcome of surgery, with the desire to go back to the life they had before GO (154).

Patient satisfaction may be defined as the degree to which a patient feels to have received high-quality health care and it is certainly a subjective measurement (160). This concept is complex as it is composed of satisfaction determinants, that are patient-dependent variables (such as background expectations, interaction expectations, action expectations and finally outcome expectations), and satisfaction components, that are the actual kind of care that the patients received (161). Understanding the elements of patient satisfaction is important on many levels. As the main goal of a medical procedure is to provide high-quality of care that satisfies the needs of the patients, the measure of satisfaction allows to change the practice in order to improve the quality of care (160). This observation is especially relevant if we consider that nowadays patients have free access to medical information from the Internet, which influences the patient’ expectations and desires. The improvement of the quality of care may increase the level of patients' expectation, causing a paradoxical decrease of the level of satisfaction (162).

For this reason, the idea that engaging patients and patients associations in decisions about the priority of interventions is a relevant factor in improving quality of health service, has grown importance in several fields of the Medicine. The patient's perspective is multidimensional, and has been measured through the use of patient reported outcomes (PROs). A great amount of work using PROs has been performed in areas such as cancer care, where clinicians should balance the available treatments against their side effects and morbidity especially in patients in which long-
term survival in not achievable. Important PROs that have been proposed in the field of oncology include the analyses of three main areas: quality of life, current health state, and satisfaction with care (163). The GO-QoL was specifically designed for patients with GO and has been validated as a PRO in measuring the benefits of the current approach to GO management. There are still several critical points, from the patients point of view, along the way of improving disease care. A first attempt to engage patients and public in a discussion on GO unmet needs was recently performed by Perros et al. in a two-day event, planned by a committee of professional and patient-led organizations: the patients disclosed that psychological elements should be on of the priorities for future research (164).

Conclusions

In patients, the improvement of satisfaction is associated with an improvement of the quality of life. In addition, the incorporation of patient satisfaction as a part of the evaluation of treatment quality may also influence the population's health and the health care policies. In fact, progress in patient satisfaction is associated with cost saving as a result of fewer complaints, second opinions, and repeated investigations (160). As the main goal of a treatment is the well-being of the patient, the therapeutic strategy should be addressed to better suit the patient needs, more than improving one or more biological parameters. Therefore, the measurement of quality of life and patients satisfaction is mandatory. In our experience, these topics have been partially overlooked by clinical researchers in the field of GO, also probably in relation to the persistently unsatisfactory outcome of medical treatment modalities in this disease. It is predictable that in the near future, the increasing availability of new therapies will expand the therapeutic options for GO patients and allow clinician to really personalize the treatment protocols to better suit the patients' personal needs. In this context, the engagement of the
patients association and patients in such decisions will be an invaluable opportunity for improve the quality of care in GO.

References

Rundle FF & Wilson CW. Development and course of exophthalmos and ophthalmoplegia in Graves' disease with special reference to the effect of thyroidectomy. *Clinical Science*. 1945 S 177-94

27 20 Hudson HL, Levin L & Feldon SE. Graves exophthalmos unrelated to extraocular muscle
enlargement. Superior rectus muscle inflammation may induce venous obstruction.

21 Nugent RA, Belkin RI, Neigel JM, Rootman J, Robertson WD, Spinelli & Graeb DA.

22 Nakase Y, Osanai T, Yoshikawa K & Inoue Y. Color Doppler imaging of orbital venous

23 Alp MN, Ozgen A, Can I, Cakar P & Gunalp I. Colour Doppler imaging of the orbital
vasculature in Graves’ disease with computed tomographic correlation. British Journal of
Ophthalmology. 2000 84 1027-30, doi: 10.1136/bjo.84.9.1027

24 Somer D, Ozkan SB, Ozturk H, Atilla S, Soylev MF & Duman S. Colour Doppler imaging
of superior ophthalmic vein in thyroid-associated eye disease. *Japanese Journal of

25 Monteiro ML, Angotti-Neto H, Benabou JE & Betinjane AJ. Color Doppler imaging of the
superior ophthalmic vein in different clinical forms of Graves’ orbitopathy. *Japanese

26 Verity DH, Rose GE. Acute thyroid eye disease (TED): principles of medical and surgical

27 Terwee CB, Prummel MF, Gerding MN, Kahaly GJ, Dekker FW, Wiersinga WM.
Measuring disease activity to predict therapeutic outcome in Graves' ophthalmopathy.

28 Potgieser PW, Wiersinga WM, Regensburg NI & Mourits MP. Some studies on the natural
history of Graves' orbitopathy: increase in orbital fat is a rather late phenomenon. *European

thyroidectomy alone or followed by radioiodine therapy: a 2-year longitudinal study.

Endocrine 2012 41 320–326.

Neumann S1, Raaka BM & Gershengorn MC. Human TSH receptor ligands as pharmacological probes with potential clinical application. *Expert Reviews of Endocrinology and Metabolism* 2009 4 669.

Distler JH & Distler O. Intracellular tyrosine kinases as novel targets for anti-fibrotic therapy in systemic sclerosis. *Rheumatology* 2008 47 v10-1

Li B & Smith TJ. Regulation of IL-1 receptor antagonist by TSH in fibrocytes and orbital fibroblasts. *The Journal of Clinical Endocrinology & Metabolism* 2014 99 625-33.

Stan MN, Garrity JA, Carranza Leon BG, Prabin T, Bradley EA & Bahn RS. Randomized Controlled Trial of Rituximab in Patients With Graves' Orbitopathy. *The Journal of Clinical Endocrinology & Metabolism* 2014 100 432-41

Mackay F, Groom JR & Tangye SG. An important role for B-cell activation factor and B cells in the pathogenesis of Sjogren's syndrome. *Current opinion in rheumatology* 2007 19 406-413.

Krassas GE, Stafilidou A & Boboridis KG. Failure of rituximab treatment in a case of severe thyroid ophthalmopathy unresponsive to steroids. *Clinical Endocrinology* 2010 72 853-5.

Descotes J. Immunotoxicity of monoclonal antibodies. *mAbs Journal* 2009 1 104-111

Wiersinga WM. Quality of life in Graves’ ophthalmopathy. *Best Practice & Research Clinical Endocrinology & Metabolism* 2012 26 359-70.

Gerding MN, Terwee CB, Dekker FW, Koornneef L, Prummel MF & Wiersinga WM. Quality of life in patients with Graves’ ophthalmopathy is markedly decreased: measurement by the Medical Outcomes Study instrument. *Thyroid* 1997 7 885–889.

FIGURE LEGENDS
Figure 1A. The byphasic course of the severity of Graves’ orbitopathy according to the model of Rundle (10). The dotted line shows the most severe forms of disease, generally responsive to urgent surgical decompression of the orbit. The degree of residual disease is related to successful (a) or unsuccessful (b) immunosuppression.

1B. Proposed curve of the changes of activity in relation to the efficacy of immunosuppression. Shaded areas show successful (a) or unsuccessful (b) response to therapy. Persistence of chronic congestive signs may be observed even after disease inactivation.

1C. Changes of quality of life in relation to disease severity and successful (a) or unsuccessful (b) immunosuppressive therapy, based on the hypothesis that quality of life is inversely related to the degree of residual disease, as in 1A.

Figure 2. Potential targets for immunomodulatory treatments in active moderate-severe Graves’ orbitopathy.
Table 1. Inflammatory signs of active Graves’ orbitopathy (GO). The clinical activity score (CAS) is the sum of all items present. A CAS >3/7 or >4/10 indicates active GO

| Painful, oppressive feeling on or behind the globe, during the last 4 weeks |
| Pain on attempted up, side or down gaze, during the last 4 weeks |
| Redness of the eyelid(s) |
| Diffuse redness of the conjunctiva, covering at least one quadrant |
| Swelling of the eyelid(s) |
| Chemosis |
| Swollen caruncle |
| Increase of ptosis of ≥2 mm during a period of 1-3 months |
| Decrease of eye movements in any direction ≥8° during a period of 1-3 months |
| Decrease of visual acuity of ≥1 line(s) on the Snellen chart (using a pinhole) during a period of 1-3 months |
| Total |
| 3 /7 1st visit |
| 4/10 2nd visit |
Table 2. Effect of treatments for Graves’ hyperthyroidism on Graves’ orbitopathy (GO).

<table>
<thead>
<tr>
<th>Finding</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No impact on natural history of GO of antithyroid drugs</td>
<td>30-35</td>
</tr>
<tr>
<td>Uncertain effect of thyroidectomy on progression of GO</td>
<td>34-36</td>
</tr>
<tr>
<td>De novo occurrence or progression of GO after radioiodine treatment with or without steroid prophylaxis</td>
<td>39-43</td>
</tr>
<tr>
<td>Post-ablation hypothyroidism induces progression of GO</td>
<td>44,45</td>
</tr>
<tr>
<td>Stabilization of GO after total thyroid ablation (thyroidectomy followed by radioiodine treatment)</td>
<td>46-50</td>
</tr>
</tbody>
</table>
Exophthalmos
Constant diplopia
Lid retraction/edema
DON
Corneal breakdown
Inconstant/intermittent diplopia
Residual disease
Time
Severity
Rehabilitative surgery

Disease severity

Time

GO-quality of life

A

B
Figure 1

- Glucocorticoids
- Adipocyte cytokines/chemokines secretion
- Anakinra
- Tocilizumab
- Belimumab
- IL-1
- IL-6/IL6R
- TNF-α
- BAFF
- IL-6/IL6R
- TNF inhibitors
- Antigen presentation
- B cell activation
- Rituximab
- Antibody secretion
- Glucocorticoids
- TSHR antagonists
- Teprotumumab
- Recruitment of macrophages
- GAGs deposition
- Increased adipogenesis
- Tyrosine kinase inhibitors
- mTOR inhibitors
- Fibroblast
- TSHR
- Plasmacell
- Glucocorticoids