IS SURGERY NECESSARY FOR “MILD” OR “ASYMPTOMATIC” HYPERPARATHYROIDISM?

Bruno Niederle \(^1\), Jean-Louis Wémeau \(^2\)

1 Section Endocrine Surgery
Division of General Surgery
Department of Surgery
Medical University
Währinger Gürtel 18-20
VIENNA, A-1090 - Austria
bruno.niederle@meduniwien.ac.at

2 Clinique Endocrinologique Marc Linquette
Hôpital Claude Huriez
4\(^{\text{ème}}\) Ouest - CHRU
59037 LILLE Cedex- France
jl-wemeau@hotmail.fr

Corresponding author
jl-wemeau@hotmail.fr

Authors declare no disclosure
SUMMARY

A large majority of the currently diagnosed patients with hyperparathyroidism (PHPT) are “mild” or “asymptomatic”, mainly observed in women after menopauses. Following the debate held at the 16th European Congress of Endocrinology in Wroclaw (Poland) from May 3-7, 2014, arguments are here presented which push one surgeon and one medical practitioner to consider these situations rather have to profit from surgery, or simply from survey.

For the trained endocrine surgeon, it is evident that parathyroidectomy confirms the diagnosis and undoubtedly reduces the discomfort felt by certain patients, prevents all risks of complications, removes patients and medical teams from the monitoring and represents a real individual financial benefit.

Contrary the medical practitioner considers that mild or asymptomatic hyperparathyroidism is commonly stable, and very rare are the subjects at risk of complications, particularly of fractures; prevention of vascular and metabolic disorders, nephrolithiasis, bone rarefaction justify a regular physical exercise, a safe alimentation, a sufficient calcium and high water intake, the correction of the frequent deficit in vitamin D; finally has also to be considered the impossibility to refer to specialized (endocrine) surgeons, the enormous cohort of subjects more than 50 years with “mild” or “asymptomatic” PHPT.

The surgeon and the medical practitioner agree to consider that in patients with “mild” or “asymptomatic” disease, there is no place for medical treatments, in particular calcimimetics and bisphophonates. Both agree that further studies are needed to clarify the long term prognosis of operated and non-operated PHPT in term of fractures, cardiovascular risk, and mortality. Individual and collective cost/benefit ratios of surgery or survey are also still imperfectly evaluated.
INTRODUCTION

Hypercalcemia and subsequently primary hyperparathyroidism (PHPT) is found more frequently than expected (1). Therefore, PHPT has been added to the list of commonly diagnosed endocrine diseases.

PHPT is a chronic disease displaying various “clinical courses”. By definition (2) only very few are “asymptomatic” (= free of symptoms, no organ manifestations even after careful screening) (3).

Many more patients are “classically symptomatic” (bones, stones and abdominal groans: renal and/or bone manifestations, associated diseases, such as peptic ulcer, acute/chronic pancreatitis; hypercalcemic crisis) (1). As a consequence of routinely applying calcium analysis thus documenting hypercalcemia, in our days the majority of patients is “minimally (“mild”) symptomatic”, reporting complaints associated with the “hypercalcemic syndrome” – moans, depression, lethargy, apathy, changes in cognition, loss of memory, confusion, insomnia, headaches and myopathy with muscular weakness, polyuria and polydipsia, constipation, weight loss, vomiting, nausea, epigastric discomfort, overall decreased quality of life – and/or hypertension and/or osteopenia (2).

The literature fails to yield a clear distinction between “mild” and “asymptomatic” PHPT (4). Therefore, many reports, even the recently published international consensus statements, have discussed “asymptomatic” and “mildly” symptomatic disease as one and the same entity (5-7) (*).

“Mild” or “asymptomatic” PHPT is defined as primary overactivity of one or more parathyroid glands, as supported by laboratory values, and in which there are no clear “classical” symptoms related to excessive calcium or PTH, and therefore no formal indications for surgery (5-7). Here conditions of familial hypocalciuric hypercalcemia will be excluded.

The conventional criteria of “mild” or “asymptomatic” PHPT, used in the debate, are as follows (5-7):
- Age >50 years, since progression appears to be lower at this age,
- Level of blood calcium less than 1 mg/dL (0.25 mmol/L) above the upper limit of normal range. As a result, there are no clear signs as observed with more pronounced hypercalcemia (excessive weakness, constipation, polyuria-polydipsia syndrome, arterial hypertension),
- Absence of nephrolithiasis,
- No alteration in renal function (creatinine clearance > 60 ml/min, as estimated by the Cockcroft-Gault or MDRD formulas),
- No evidence of detrimental effect on bone (fragility fractures) or on bone mineral density parameters (T-score greater than - 2.5 at the radius, lumbar spine or femoral neck),
- Subject potentially available for monitoring.
Is surgery necessary in principle? Or should it be forgone in favor of the survey or possible benefits of currently available medications?

This question was the subject of a debate at the European Congress of Endocrinology, held in Wroclaw, Poland from May 3-7, 2014, with its content presented here.

Section 1: Discussion in favour of surgery for “mild” or “asymptomatic” primary hyperparathyroidism.

Bruno Niederle (Vienna – Austria)

Observational studies of untreated “mildly symptomatic” and “asymptomatic” patients have documented a progression of disease in up to 37%. However, multivariate analysis has not identified a single or a set of biochemical parameters that would allow predicting the clinical course of these subjects (3). Careful analysis of patients has revealed that postoperative metabolic complications occur in those with a long history of PHPT. The death rate related directly or indirectly to PHPT ranges from 1% to 12%. Death in patients is mainly caused by cardiovascular disease (up to 68%) and acute or chronic renal failure (up to 8%) (4). The findings are consistent with the hypothesis that untreated hyperparathyroidism would bear an increased risk of death, particularly from cardiovascular diseases, but that this risk is gradually reduced after surgery (8). Acute complications with death are rare but may occur in the course of “mild” PHPT (9). Altogether, the reports raise the question whether or not surgery had been too late in these patients.

For the first time Yu et al (10) demonstrated an increased risk of relative mortalities and morbidities among patients with untreated “mild” PHPT, in a large unselected population.

In a prospective and randomized study evaluating the skeletal effects of early and delayed surgical treatment in patients with “mild” PHPT comparing biochemical bone parameters and bone mineral density of hip and lumbar spine of both groups, the authors conclude indirectly that a prolonged exposure to “mild” and seemingly stable PHPT may be a risk factor for hip fractures. The findings add to other reasons for surgical treatment of “mild” PHPT without delay regardless of serum calcium levels (11). Benefits of surgery on bone mineral density, quality of life, and psychological function has been demonstrated (12, 13).

In patients with “mild” asymptomatic PHPT, successful parathyroidectomy is followed by an improvement in bone mineral density and quality of life (13). In a prospective, randomized,
controlled trial of parathyroidectomy versus observation in patients with “asymptomatic” PHPT, the suggestion has been made that decreased serum PTH levels may correlate with improved sleep and that parathyroidectomy may decrease sleepiness in patients with asymptomatic PHPT (14). In another randomized control trial, parathyroidectomy has been shown to improve functional capacity in "asymptomatic" older patients with PHPT (10).

Because of the unpredictable clinical and biochemical course of disease, patients with PHPT initially diagnosed as “mild” require close medical and biochemical observations in 6- to 12-month intervals (7, 15). The concept of “watchful waiting” in “mild” PHPT implies a high level of patient compliance, in addition to a high willingness to spend a large amount of money in a chronic disease that is curable by one surgical procedure in up to 98%, as regular biochemical and radiological follow-up examinations are mandatory not to oversee organ manifestations (7). Parathyroidectomy is more cost-effective than observation in managing asymptomatic “mild” PHPT patients. Furthermore, in a cost-benefit calculation, pharmacologic therapies were not observed to be cost-effective (16).

The only curative treatment of PHPT is the surgical removal of the hyperfunctioning parathyroid tissue, applying a minimally invasive targeted approach in case of single-gland disease whenever feasible (7).

A targeted approach is more cost-effective compared to traditional surgical bilateral exploration (17).

As summarized recently, all patients with PHPT who meet surgical criteria should be referred to an experienced endocrine surgeon to discuss the risks, benefits and potential complications of surgery (18). A randomized controlled clinical trial of surgery versus no surgery in patients with “mild” asymptomatic PHPT demonstrated the benefit of surgery on bone mineral density, quality of life, and psychological functions (12).

SF-36 Health Survey patients with "classic" and "mild" PHPT significantly improved in 9/10 and 10/10 scales, one year after surgery (19). Those with "mild" disease had a statistically larger improvement than those with "classic" disease in 4 scales. Therefore the authors concluded, that quality of life significantly improved in surgically treated patients with both "mild" and "classic" PHPT, supporting surgical treatment of "mild" PHPT. Moreover, quality of life may improve more in patients with "mild" rather than "classic" disease (19).

Overall, patients benefit from surgery due to high single-procedure cure rates and overall low complication rates (20).
Section 2: Discussion against surgery for “mild” or asymptomatic hyperparathyroidism

Jean-Louis Wémeau (Lille – France)

Seven reasons will be given to support our view for not considering the use of surgery for mild or asymptomatic PHPT.

1) It must now be accepted that the general description of primary hyperparathyroidism has completely changed.

Historically, we owe a great debt of gratitude to Friedrich Daniel von Recklinghausen for the descriptions of pathological lesions of osteitis fibrosa cystica (1891), to Felix Mandl, already a famous surgeon from Vienna, who was the first in 1926 to surgically cure a patient of parathyroid adenoma.

However the lessons of Fuller Albright (1948) need to be put on hold (21). He had been particularly very impressed by the observation in the USA of Captain Charles Martell. At the end of WWI, the latter was of large build Master Mariner in the Merchant Marines. Over the years he complained of bone pain, recurrent renal lithiasis, and had fractures and a very significant decrease in height. After several failed cervicotomies, he was finally cured by the removal of a mediastinal adenoma. However the surgical treatment of hyperparathyroidism did not prevent progression of the disease, leading to death from kidney failure in 1932. As a result, Albright taught generations of endocrinologists that hyperparathyroidism is a rare disorder, which should be considered in the event of bone involvement or recurrent renal lithiasis, and which requires early surgery in order to avoid the development of irreversible and fatal renal impairment.

2) Hyperparathyroidism is now a very frequently recognized disorder.

It is in fact the third most common endocrinopathy (following diabetes mellitus and thyroid diseases). Its prevalence is commonly estimated at 1 in 1,000 (22). However the most recent estimations in Europe, from Scandinavia (23-25) and Scotland (26), suggest that the prevalence is instead 1% in the general population, and 3 to 4% in post-menopausal women.

In Rochester, Minnesota (USA), the incidence of PHPT increased considerably between 1970 and 1975, along with the widespread use of blood calcium assays. The incidence of the disease seemed to decline thereafter (27). All the current prospective studies however clearly show that hyperparathyroidism is increasingly frequent both in the USA and Europe. The prevalence after adjustment for age tripled in Los Angeles between 1995 and 2010 (28). In Denmark, amongst women
over the age of 50 years, the incidence increased fivefold between 1977 and 2000 (25). In this respect, mild or asymptomatic hyperparathyroidism must be considered an extremely common condition.

If it is accepted that the population of Europe has just over 500 million inhabitants, that the European population aged > 50 years is nearly 25%, then the proportion of subjects with PHPT beyond their fifties would be close to 3%. As the overall proportion of mild or asymptomatic cases of PHPT is estimated at 80%, then Europe should have about 3 million subjects over the age of 50 with mild or asymptomatic PHPT.

That said, how many specialized surgeons in Europe are available for the surgical treatment of these 3 million subjects with mild or asymptomatic PHPT? Indeed, it is commonly agreed that, notwithstanding the progress made in imaging, only very specialized surgeons are capable of managing patients with PHPT.

3) Mild and asymptomatic primary hyperparathyroidism is a disorder that is usually stable or sometimes very slightly progressive.

PHPT hardly seems progressive in subjects beyond the age of 50 years with regard to their clinical condition, levels of blood and urine calcium, and bone mineral density parameters.

This was shown in New York in a population of 121 non-operated patients who had been followed for 10 years (29). More recently, similar results were observed in populations with mild or asymptomatic hyperparathyroidism from the Prospective Colombia University Natural Study. In 49 non-operated subjects, the calcium concentrations remained stable for 13 years, with a secondary mild but significant increase in blood calcium (from 2.62 to 2.78 mmol/L) (30). In the Parathyroid Epidemiology and Audit Research Study (PEARS) in Tayside (Scotland, UK), 904 subjects with mild hyperparathyroidism were followed for 10 years. The degree of hypercalcemia remained stable in 87 subjects, and an only temporary increase was seen in about 85% of the subjects. Ultimately only 1% of the original cohort had a steady increase in the levels of blood calcium lasting over six months (31).

4) The benefits of surgery on bone mineral density in subjects with mild or asymptomatic primary hyperparathyroidism have been proven. However, there is much less evidence that surgery is beneficial on the fracture risk.

After parathyroidectomy, all surveys indeed show a rapid increase of close to 10% in the bone mineral density parameters at 2 sites (lumbar spine, femoral neck) after six months or one year, but
not beyond that (32, 33). However in observing changes in the bone mineral density parameters of patients who were not operated during these studies, it can be seen that they had no worsening of bone mineral density at any of the sites studied. The study of Rubin (30) has shown stability for up to 8-9 years but deterioration at the hip and distal 1/3 radius afterwards.

Additionally, in the PEARs Study there was not a significant reduction in the number of fractures in 200 patients with mild hyperparathyroidism treated with parathyroidectomy (34).

In the Italian study of post-menopausal women, the fracture risk was increased in patients with PHPT, but there was no statistically significant difference between the symptomatic and asymptomatic patients who did not have the criteria required for surgery (35). Therefore, as emphasized by Macfarlane in the recent article in The Lancet, no prospective or randomized controlled trials have demonstrated benefits on the risk of fracture (36).

5) It is unclear whether parathyroidectomy improves neuropsychological symptoms and cardiovascular outcomes and reduces mortality.

With regard to quality of life, mental and physical wellbeing in one study did not differ between patients with mild or asymptomatic hyperparathyroidism and the control subjects at baseline (12). After parathyroidectomy however, there was a subtle but significant increase in the SF-36 and SCL-90R scale parameters in two studies from USA and Italy (12, 13).

In contrast, in the large, controlled and randomized study of 191 patients in Scandinavia, there were differences at baseline in the SF-36 quality of life questionnaire, as well as in the symptoms assessing the psychological state (on the Comprehensive Psychopathological Rating Scale). In this survey however, the symptoms had not changed two years after the parathyroidectomy (37).

With regard to symptoms, it is possible that patients with hyperparathyroidism report more fatigue, pain, polydipsia and digestive disorders (constipation, dyspepsia). In the study by Eigelberger (38), these symptoms were more frequent before the operation for mild hyperparathyroidism than in subjects requiring thyroidectomy. The benefits of surgery in terms of these signs were greater after parathyroidectomy than in subjects who had thyroidectomy. It should be mentioned that there is no data on the long-term assessment of these symptoms on the quality of metabolic and hormonal control after surgery. The study of Bollerslev et al. (39) reports data on metabolic parameters up to 2 years.

In contrast, in the study by Kahal (40), before the intervention for mild hyperparathyroidism or thyroid disease, there were differences in the assessment for depression but no difference for
anxiety and on the Mood Rate Scale. These parameters remained unchanged afterwards in subjects with thyroid disease after hemithyroidectomy.

With regard to mortality, in a 20-year observational study in Denmark on over 3,200 patients, survival was shown to be greater in the population of patients with PHPT treated surgically compared with the population that had only been monitored (41). In both groups, the observed survival was lower than that of the general population, especially as a result of excessive deaths from cardiovascular causes. It should be emphasized that the difference in survival of these operated and non-operated populations diminished over time. Moreover, the study was non-prospective and non-randomized, and the patients who had surgery were younger.

Increased mortality in patients with hyperparathyroidism was also mentioned in Sweden, with a relative risk of 1.7 (42), and in Scotland with a relative risk of 1.6 (31, 36).

In contrast, the risk of death from cardiovascular causes was surprisingly lower in the survey conducted in Rochester (27), with a relative risk of = 0.69.

A variety of factors contribute to the increase in cardiovascular risk: hypertension (41-45), dyslipidemia (46, 47), endothelial dysfunction (48), insulin resistance (31, 49, 50), left ventricular hypertrophy (51, 52), increased thickness of the carotid intima and increased arterial resistance (53). There is no evidence of a direct individual role in mortality in patients with PHPT. In various studies though not in all, observations have been made after surgery of decreases in arterial hypertension, in the non-dipping pattern of blood pressure, the metabolic syndrome, and cardiac and left ventricular hypertrophy (45, 51).

It should be noted that authors ordinarily correlate these factors with the PTH level but not with the blood calcium level. This is clearly obvious for systolic arterial pressure (45), left ventricular hypertrophy (51) and arterial resistance (53).

It must be pointed out however that in hyperparathyroidism, there is an inverse correlation found in all the studies between the level of 25-hydroxycholecalciferol and PTH. Also in the general population, vitamin D deficiency contributes to increased plasma levels of PTH, but it is also correlated with insulin resistance, the metabolic syndrome, atherosclerosis, arterial hypertension and left ventricular hypertrophy (54). FGF 23, a phosphatonin that is increased with hyperparathyroidism, could also contribute to the increased cardiovascular risk (55).
As a result, the very common condition of vitamin D deficiency in patients with PHPT is a possible confounding factor, which contributes to the increased PTH and increased cardiovascular risk.

Similarly, it should be emphasized that replacement doses of vitamin D in non-operated patients with mild hyperparathyroidism after six months also improved the bone mineral density parameters. In the study conducted in Lille (France), the effects of correcting a vitamin D deficiency after six months of treatment in subjects with deficient bone mineral density parameters appeared to be identical to that of parathyroidectomy in subjects without deficiencies (56). The safety and validity of correcting vitamin D deficiency in PHPT have been well established in various surveys, particularly in the meta-analysis of Shah (57).

6) We have also considered the cost of surgery for all the subjects with primary hyperparathyroidism.

The cost-effectiveness ratio in Euros compared to the quality-adjusted life years increased with the age of the subjects. In France, it was shown that the cost of surgery and of monitoring are nearly equal, but the cost-effectiveness ratio tends to favor surgery for patients between the ages of 40 and 80 years (17). In the USA, the cost of surgery is also somewhat high, but the surgery was slightly more effective. Finally, the estimation seemed primarily dependent on the definition of the quality of life (16, 58, 59).

Clearly, in all the surveys, the most costly approach is the prescription of medication.

7) It needs to be emphasized that medical treatment has no role for patients with mild or asymptomatic hyperparathyroidism.

Estrogen, which can only be used in certain post-menopausal women, increases the bone mineral density parameters at the femoral neck and lumbar spine but has no effect on blood calcium and PTH levels (60). SERM (raloxifen) has not been well evaluated (61). Biphosphonates, such as alendronate, temporarily increase the levels of PTH in the first month; they have no effect on the level of blood calcium, and they progressively reduce bone turnover markers. They also slightly increase the bone mineral density parameters at the lumbar spine and hip but not at the distal radius. Their possible long-term disadvantages must not be overlooked (62 - 64).

Finally, the calcimimetic cinacalcet, an allosteric stimulator of the calcium receptor, is capable of chronically and significantly reducing the blood calcium and PTH levels. But even in the long-term, it has no effect on bone mineralization (65).

Some anti-resorption agents and calcimimetics appear long-term expensive, are not necessarily well tolerated and also have some adverse effects.
For all of these reasons, if you think that the patient is symptomatic or requires treatment, please choose surgery.

Finally on my point of view: PHPT is a very common condition. Most cases involve women over the age of sixty years and are mild or asymptomatic, rarely appearing progressive. Surgery would seem expensive for the entire cohort of these countless subjects, without a clear demonstration of its value in the majority of people.

For this reason, in accordance with international consensus, the use of oral calcium, supplementation with sufficient doses of natural vitamin D, high water intake, regular physical exercise, and minimal medical supervision seem to be adequate and effective for the majority of subjects with mild or asymptomatic hyperparathyroidism.

CONCLUSION

Both authors think that “mild” or “asymptomatic” PHPT (used in the same context here and in the reviewed literature) is a common situation, where decision of treatment or monitoring does not constitute an emergency. It has to be considered in the context of prevention of potential complications. It must take account of local skills, general condition and wishes of the concerned patients. A multidisciplinary conference with the clinical endocrinologist, the endocrine surgeon and the affected patient may be of value, to address all relevant issues of permanent follow-up and definitive (= surgical) treatment.

The surgeon and the medical practitioner agree that medical therapies, in particular calcimimetics and bisphosphonates, have no place in patients with mild or asymptomatic disease, with the exception of correction of vitamin D deficiency before surgery or for the simply surveyed subjects.

Both agree to consider that further studies are needed to clarify the long term prognosis of operated and non-operated PHPT in term of fractures, cardiovascular risk, and mortality. Individual and collective cost/benefit ratios of surgery or survey are also still imperfectly evaluated.

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.
(*) Same opinion is supported by the recent Consensus Statement of the Italian Society of Endocrinology: Marcocci C. et al., J Endocrinol Invest. 2015 Mar 28. [Epub ahead of print]

REFERENCES

30 Rubin MR, Bilezikian JP, McMahon DJ, Jacobs T, Shane E, Siris E, Udesky J, Silverberg SJ. The natural history of primary hyperparathyroidism with or without parathyroid surgery after 15 years. J Clin Endocrinol Metab. 2008; 93: 3462-70

31 Yu N, Leese GP, Smith D, Donnan PT. The natural history of treated and untreated primary hyperparathyroidism: the parathyroid epidemiology and audit research study. QJM. 2011; 104: 513-21

38 Eigelberger MS, Cheah WK, Ituarte PH, Streja L, Duh QY, Clark OH. The NIH criteria for parathyroidectomy in asymptomatic primary hyperparathyroidism: are they too limited? Ann Surg. 2004; 239: 528-35

41 Vestergaard P, Mosekilde L. Cohort study on effects of parathyroid surgery on multiple outcomes in primary hyperparathyroidism. BMJ. 2003; 327: 530-4

