Title: Benign Fine-Needle Aspiration Cytology of Thyroid Nodule: to repeat or not to repeat?

Short title: Benign FNAC of Thyroid Nodules

Authors: Filip Gabalec¹, Jan Čáp¹, Aleš Ryška², Tomáš Vašátko¹, Věra Ceeová¹

¹Second Department of Internal Medicine and ²The Fingerland Department of Pathology,
Charles University Faculty of Medicine and Teaching Hospital in Hradec Králové, Sokolská
581, 500-05, Hradec Králové, Czech Republic,

Corresponding author to whom reprint requests should be addressed:

Filip Gabalec, MD
Second Department of Internal Medicine
Charles University Faculty of Medicine and Teaching Hospital in Hradec Králové,
Sokolská 581,
500-05 Hradec Králové,
Czech Republic,
Email: gabalec@fnhk.cz
Tel: +420 495 834 676

Key words: Fine-Needle Aspiration Cytology, Thyroid Gland, Thyroid Nodule
Word count: Text 1870, Abstract 215; Tabs 3, Figure: 1

Abstract

Context: Fine-needle aspiration cytology (FNAC) is the gold standard for evaluating thyroid nodules. It has a sensitivity rate of about 95 % i.e. false-negative results represent up to 5% of cases. The value of repeated FNAC during follow-up is still controversial.

Objective: To evaluate the usefulness of repeating the FNAC for initially benign nodules.

Design and methods: All 5017 patients that underwent FNAC of the thyroid nodule in years 1991 to 2008 were retrospectively evaluated.

Results: Repeated FNAC was performed in 574 nodules with initially benign result. The number of repetitions varied from one to six. Repeatedly benign results were found in 498 cases, malignant/suspicious results with initially benign cytology were found in 76 nodules (13.2%). Carcinoma was present in 13 of the 58 surgically treated malignant/suspicious results of initially benign cytology.

Conclusions: A change from benign FNAC result to a malignant/suspicious one was present in more than 13 % of the patients with initially benign cytology; malignancy has been recognized on the basis of repeated FNAC in 2.3 % patients. In the majority of cases the repetition corrected wrong cytological interpretation of results other than colloidal goitre, especially Hashimoto's thyroiditis and regressive changes. We believe that repeating FNAC in patients with benign cytology in about one-year horizon can reduce the rate of undiagnosed tumours.
Introduction

Thyroid nodules represent common problem in endocrinology, with an estimated prevalence of 4-7% in the adult population for palpable nodules. The prevalence is higher in women (5%) than in men (1%) (1). The prevalence of nodules found during autopsies, operations or ultrasound examinations is considerably higher and increases with age (2-4). The majority of nodules are benign. Cancer can be present in 3–10% of nodules, depending on age, gender, radiation exposure history, family history, and other factors (5). Over the last few years, many advances have been achieved in diagnosing thyroid nodules. In addition, various clinical and radiological features have been studied to increase detection rate of differentiated thyroid carcinoma. Unfortunately, these features lack specificity and sensitivity (6-9) and none has been so far recommended for a routine use (10). FNAC is a well-established method for evaluating thyroid nodules. The indications for FNAC are well established and described in several different guidelines (11-13). Patients with benign results of FNAC should be followed up due to known 5% false-negative rate of thyroid FNAC (14). Some discrepancies can be found in the current guidelines of three different endocrine societies (The American Association of Clinical Endocrinologists, The American Thyroid Association and The European Thyroid Association) as well as among clinicians. One area where there is no consensus among authors regards the need to repeat aspiration cytology in a patient with benign FNAC result. The aim of this study was to determine the usefulness of repeated FNAC in a large series of patients followed-up for more than 10 years.

Patients and Methods

Results of FNAC of thyroid nodules performed in 5017 patients during a period from 1991 to 2008 at the Charles University, Faculty of Medicine and Teaching Hospital in Hradec Králové, were retrospectively analysed. The Ethic Committee of the Charles University, Faculty of Medicine and Teaching Hospital in Hradec Králové has approved the study. A total
of 6009 cytological diagnoses were reviewed. All FNACs were performed under US
guidance. Results of the FNAC were classified as unsatisfactory (non-diagnostic), benign and
malignant/suspicious from malignancy (indeterminate). Unsatisfactory aspirates were
excluded from further analysis. The results were evaluated as unsatisfactory if there were less
than 10 groups of cell, each containing at least 10 elements. Benign aspirates included nodular
goitres with or without regressive changes and/or focal lymphocytic thyroiditis as well as
Hashimoto’s and de Quervain’s subacute thyroiditis. The ‘‘malignant/suspicious’’ category
included follicular neoplasm, papillary carcinoma, anaplastic carcinoma, medullar carcinoma,
lymphoma and metastatic carcinoma. These were diagnosed either as unequivocally
malignant or with varying degrees of probability, and included uncertain findings that could
not rule out malignancy. The pathological examination was performed after surgery
(hemithyreoectomy or total thyreodectomy). The results were classified as benign (colloid
nodular goitre, follicular adenoma, Hashimoto’s thyroiditis) or malignant (follicular
carcinoma, papillary carcinoma, anaplastic carcinoma, medullar carcinoma, lymphoma or
metastatic carcinoma) (15, 16).

Results
Altogether 574 initially benign nodules were followed by repeated FNAC two or more times
in 55 (9.6 %) men and 519 (90.4 %) women, aged from 15 to 92 years (mean 50.2 , median
50). The clinical diagnosis of the subjects, with initially benign FNAC result was euthyroid
nodular goitre in 418 patients (72.8 %), 84 (14.6 %) patients with nodule in Hashimoto
thyroiditis, 42 (7.3 %) with toxic nodular goitre, 27 (4.7 %) with cyst and 3 patients with
subacute thyroiditis and nodule. Clinically there were 501 euthyroid patients (87.3 %), 31 (5.4
%) with hypofunction and 42 (7.3 %) with hyperfunction. The indication was single nodule in
176 cases and dominant nodule in multinodular goitre in 398 patients. In cases with toxic
multinodular goitre the FNAC was repeated only if the nodule proved to be cold on
scintigraphy. FNAC was repeated once in 400 cases, twice in 107, 3 times in 49, 4 times in 10, 5 times in 7 patients and 6 times in 1 patient. The aspiration was repeated in the patients with benign first FNAC followed-up at our department provided the patient agreed. However the indication was on the investigating physician so that selection bias is probable (cases with suspicious US characteristics, uncertain FNAC result and growing nodules were aspirated more frequently). Thyroxin suppression therapy of euthyroid nodules is not routinely used at our institution.

There were 574 initially benign nodules of size from 8 to 90 mm (median 14 mm). Altogether 498 nodules had repeatedly benign cytological results. The histology was available in 153 of them (30 %) and all nodules proved to be benign. Microcarcinoma located distant from the aspirated lesion was found in 10 patients.

The cytological result changed to “malignant/suspicious” in 76 nodules with initially benign cytology during the follow-up period. Fifty-eight (76 %) of them underwent surgery; malignancy was confirmed in 13 cases - 4 papillary carcinomas, 3 follicular variants of papillary carcinoma, 4 follicular carcinomas, 1 medullar carcinoma and 1 poorly differentiated carcinoma (Figure 1).

The mean follow-up period was 7 years, with detailed data shown in Table 1.

Discussion

Many authors use four categories of cytological results (benign, indeterminate, malignant and unsatisfactory). We use only three categories, as mentioned above – 1. unsatisfactory, 2. benign and 3. malignant/suspicious from malignancy. This is due to the fact that both “malignant” as well as “suspicious/indeterminate” results have the same clinical impact – thyroid surgery is indicated in both cases (3, 11, 17). The main goal of thyroid FNAC is the early differentiation between non-malignant and malignant nodules (18) . FNAC is a well-established method and its reliability depends on several factors, such as the skill of the
physician or the experience of the cytopathologist. Use of ultrasonography in FNAC increases significantly the sensitivity, specificity and accuracy compared to conventional palpation-guided FNAC (9). Thyroid FNAC sensitivity, specificity, false positive and false-negative rates differ significantly among various authors. Sensitivity varies between 56–100 %, and specificity between 52–100 %. A positive predictive value is estimated to be 34–100 %, whereas a negative predictive value is 83–100 % (9, 15). Suspicious or clearly malignant results are indication for surgery and histopathological evaluation of the lesion while inadequate result should be followed by repeated aspiration. In terms of the follow-up of benign cytological results, no consensus has been reached so far. These different opinions are reflected in different recommendations in the guidelines of three important societies of endocrinology. The American Association of Clinical Endocrinologists and Associatore Medici Endocrinologi (AACE/AME) guidelines suggest simple follow-up of cytologically benign thyroid nodules. Repeated ultrasonography is not recommended. Repeating FNAC should be performed only for enlarging nodules, recurrent cysts or for nodules not shrinking after thyroxin therapy. The American Thyroid Association (ATA) guidelines suggest clinical follow-up for 6–18 months, without US guidance for easily palpable benign nodules. FNAC repetition or surgery is reserved for enlarging nodules only. These and other differences among guidelines are well reviewed by Gharib (19). Some authors recommend repeating FNAC always when the nodule is enlarging, has more than 4 cm in diameter, when no shrinkage of the nodule occurs after levothyroxine therapy and in cases of recurrent cysts. Wiersinga has recommended repeating palpation and FNAC one year after a benign FNAC result (20). During the last decade, several studies evaluated the risk of carcinoma in subsequent FNAC after initially benign cytology. The false-negative rate can be reduced by repeating FNAC by 4.5–5.9 % (21-23), from the initial 5.2–6.7 to 0.8–1.3 (21, 22). Subsequent results have cumulatively changed in about 7 % of the cases and carcinoma was
found in about 2%. This relevant number of carcinomas can be detected by repeated FNAC according to many authors (21-32). Some authors tried to find out how many times FNAC should be repeated. Illouz (22) proposes a minimum of 3 adequate benign results as appropriate. However, some authors have reported low false negativity (33, 34) and declare no or only limited benefit from repeated FNAC (34-37). Data are summarized in Table 2.

In our series, we analysed the results of FNAC of thyroid nodules in 5017 patients, 574 initially benign of whom underwent repeated FNAC. Thyroid carcinoma with initially benign cytology was found in 13 patients (2.3%) upon repeated FNAC. This result is in agreement with other series. The duration of the follow-up period still remains a question. Relevant data from longer studies are limited. Different authors propose time intervals ranging from 6 and 12 months (38) up to three years or more (22). In our series the interval was variable depending on referral of patients for follow-up investigation. Malignancy can be detected even in an interval of 10 years in a relatively stable nodule.

A detailed look at histologically verified malignant tumours with FNAC result changed from benign to suspicious (table 3) shows that initial cytological results were almost exclusively cases of Hashimoto thyroiditis or with severe regressive changes. First FNAC specimens were for the purpose of our study all re-evaluated by a single experienced cytopathologist (A.R.). In the majority of cases the false negative result was considered as misinterpretation of the cytological features and the sample should have been classified as suspicious. In three cases prominent regressive changes in the tumour were the cause of misinterpretation that precluded recognition of characteristic tumour features. These specimens should have been qualified as nondiagnostic. In one case only the first FNAB was clearly benign colloidal goitre and the nodule was probably missed by the initial fine-needle biopsy. When regressive changes are present, repetition of FNAC should be therefore always considered. Similar to other retrospective studies, we have also found several limitations in our survey. Various periods
between subsequent FNACs are present depending on when patients were referred for second investigation. FNAC was not repeated systematically in all patients so that selection bias is probable. Cases with suspicious US characteristics, FNAC result other than unequivocal colloidal goitre and growing nodules were aspirated more frequently. Not all of the patients were operated on and carcinoma cannot be ruled-out with certainty when the histopathological examination was not performed. Carcinoma was present in 22.41% of the operated nodules with suspicious result of repeated FNAC. Carcinoma was also present in 6.54% in initially benign FNAC results remaining benign on repetition. These results represent in all 10 cases papillary microcarcinomas with no clinical significance, present distant of the investigated nodule. To the contrary, the malignancies discovered on the basis of suspicious result of repeated FNAC were clinically important tumours larger than 10 mm misdiagnosed on the first evaluation. The size of the nodule did not change considerably in majority of papillary carcinomas.

These results confirm the usefulness of repeated aspiration during follow-up in patients with initially benign FNAC result. In our series it was able to identify malignancy missed at first FNAC in 2.3% of cases. Usually it corrected misinterpretation of sample by cytopathologist, especially when the initial result was other than colloidal goitre. We believe that repeating FNAC in patients with benign cytology in about one-year horizon can reduce the rate of undiagnosed tumours.

Declaration of interest:

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the scientific work reported.

Funding

This work was supported by the Charles University Grant Agency (grant number 79008).
References

36. Merchant SH, Izquierdo R & Khurana KK. Is repeated fine-needle aspiration cytology useful in the management of patients with benign nodular thyroid disease? *Thyroid* 2000 **10** 489-492.

Figure 1 – Results of 574 initially benign nodules after repeated FNAC are shown.
Figure 1 – Results of 574 initially benign nodules after repeated FNAC are shown.
18x13mm (600 x 600 DPI)
<p>| Table 1 Mean time of follow-up in repeated FNAC and number of positive changes |
|--------------------------------|-----|-----|-----|-----|-----|-----|-----|
| N° of performed FNAC | 2 | 3 | 4 | 5 | 6 | 7 | Totally |
| N° of nodules | 400 | 107 | 49 | 10 | 7 | 1 | 574 |
| % of all 5017 FNAC | 7,97%| 2,13%| 0,98%| 0,20%| 0,14%| 0,02%| 11% |
| N° of results changed from benign to suspicious | 48 | 17 | 8 | 3 | 3 | 0 | 79 |
| Mean time from first FNAC (years) | 3,0 | 5,3 | 6,4 | 7,4 | 8,8 | 11,2| 7,02 |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>N° of initially benign</th>
<th>N° of results changed to suspicious</th>
<th>% Changed</th>
<th>Operated</th>
<th>Malignancy</th>
<th>% Malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguilar et al., 1998 (24)</td>
<td>184</td>
<td>1</td>
<td>0,5%</td>
<td>90</td>
<td>3</td>
<td>1,6%</td>
</tr>
<tr>
<td>Čap et al., 2000 (29)</td>
<td>253</td>
<td>27</td>
<td>10,7%</td>
<td>22</td>
<td>7</td>
<td>2,8%</td>
</tr>
<tr>
<td>Dwarkanathan et al., 1993 (30)</td>
<td>196</td>
<td>13</td>
<td>6,6%</td>
<td>10</td>
<td>4</td>
<td>2,0%</td>
</tr>
<tr>
<td>Erdogan et al., 1998 (25)</td>
<td>216</td>
<td>3</td>
<td>1,4%</td>
<td>3</td>
<td>3</td>
<td>1,4%</td>
</tr>
<tr>
<td>Flanagan et al., 2006 (23)*</td>
<td>57</td>
<td>23</td>
<td>40,4%</td>
<td>23</td>
<td>9</td>
<td>15,8%</td>
</tr>
<tr>
<td>Hamburger, 1987 (31)#</td>
<td>205</td>
<td>18</td>
<td>8,8%</td>
<td>10</td>
<td>6</td>
<td>2,9%</td>
</tr>
<tr>
<td>Chehade et al., 2001 (21)</td>
<td>235</td>
<td>12</td>
<td>5,1%</td>
<td>9</td>
<td>2</td>
<td>0,9%</td>
</tr>
<tr>
<td>Illouz et al., 2007 (22)#</td>
<td>282</td>
<td>35</td>
<td>12,4%</td>
<td>31</td>
<td>7</td>
<td>2,5%</td>
</tr>
<tr>
<td>Lucas et al., 1995 (24)</td>
<td>135</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>Menéndez Torre et al., 2007 (28)</td>
<td>358</td>
<td>18</td>
<td>5,0%</td>
<td>12</td>
<td>7</td>
<td>2,0%</td>
</tr>
<tr>
<td>Merchant et al., 2000 (36)</td>
<td>45</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>Mittendorf & McHenry, 1999 (32)</td>
<td>45</td>
<td>4</td>
<td>8,9%</td>
<td>1</td>
<td>1</td>
<td>2,2%</td>
</tr>
<tr>
<td>Morosini et al., 1996 (37)#</td>
<td>471</td>
<td>8</td>
<td>1,7%</td>
<td>14</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>Orlandi et al., 2005 (27)#</td>
<td>306</td>
<td>7</td>
<td>2,3%</td>
<td>3</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>Shin et al., 2006 (26)</td>
<td>187</td>
<td>44</td>
<td>23,5%</td>
<td>6</td>
<td>3</td>
<td>3,2%</td>
</tr>
<tr>
<td>Gabalec present results, 2009</td>
<td>574</td>
<td>76</td>
<td>13,2%</td>
<td>58</td>
<td>13</td>
<td>2,3%</td>
</tr>
<tr>
<td>Total</td>
<td>3749</td>
<td>289</td>
<td>7,7%</td>
<td>68</td>
<td>13</td>
<td>1,8%</td>
</tr>
</tbody>
</table>

* only operated
adapted data
Table 3 Detailed look at 13 histologically verified malignancies with initially benign cytology

<table>
<thead>
<tr>
<th>Patient N°</th>
<th>Initial cytological result/s</th>
<th>Subsequent Cytological Result</th>
<th>Histology</th>
<th>Nodule size at first FNAC (mm)</th>
<th>Tumour size (mm)</th>
<th>Interval between FNACs (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HT</td>
<td>susp carcinoma</td>
<td>poorly differentiated carcinoma</td>
<td>60</td>
<td>90</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Colloid goitre with regressive changes</td>
<td>follicular neoplasia</td>
<td>FVPC</td>
<td>25</td>
<td>30</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>Benign</td>
<td>follicular neoplasia</td>
<td>PC</td>
<td>25</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>HT</td>
<td>follicular neoplasia</td>
<td>MC</td>
<td>25</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Cyst and regressive changes</td>
<td>follicular neoplasia</td>
<td>FC</td>
<td>33</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>Follicular adenoma</td>
<td>follicular neoplasia</td>
<td>PC</td>
<td>9</td>
<td>15</td>
<td>39</td>
</tr>
<tr>
<td>7</td>
<td>Colloid goitre with regressive changes</td>
<td>susp PC</td>
<td>FC</td>
<td>8</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>HT</td>
<td>follicular neoplasia</td>
<td>FC</td>
<td>16</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>HT</td>
<td>oncocytic tumour</td>
<td>FC</td>
<td>20</td>
<td>27</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>Microfollicular adenoma</td>
<td>susp PC</td>
<td>PC</td>
<td>20</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>HT</td>
<td>susp PC</td>
<td>FVPC</td>
<td>16</td>
<td>26</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>HT</td>
<td>susp PC</td>
<td>PC</td>
<td>19</td>
<td>19</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Colloid goitre with regressive changes</td>
<td>follicular neoplasia</td>
<td>FVPC</td>
<td>14</td>
<td>31</td>
<td>66</td>
</tr>
</tbody>
</table>

Mean 52
Median 50

HT - Hashimoto’s thyroiditis
PC Papillary carcinoma
FC Follicular carcinoma
MC - Medullar carcinoma
FVPC - follicular variant of papilocarcinoma