Human Chorionic Gonadotropin Measurements in Parathyroid Carcinoma

Short Title: hCG and Parathyroid Carcinoma

Mishaela R. Rubin1, John P. Bilezikian1,2, Steven Birken3 and Shonni J. Silverberg1

1Department of Medicine, 2Department of Pharmacology, 3Department of Obstetrics and Gynecology
Columbia University, College of Physicians & Surgeons, New York, NY

Corresponding Author:
Mishaela R. Rubin, MD
Department of Medicine
Columbia University
College of P & S
630 West 168th Street
New York, NY 10032
Tel: (212) 305-6238
Fax: (212) 305-6486
e-mail: mrr6@columbia.edu

Keywords: hCG, parathyroid cancer

Word count (text): 2425
Word count (abstract): 248
1 Table
2 Figures
Abstract

Objective: Preoperatively, it is difficult to differentiate between parathyroid cancer (PtCa) and severe primary hyperparathyroidism (PHPT) due to a benign tumor. Human chorionic gonadotropin (hCG) is a tumor marker in trophoblastic and nontrophoblastic cancers and hyperglycosolated hCG is increased in hCG-secreting malignancies. We investigated whether hCG can distinguish PtCa cancer from benign disease and add prognostic information.

Design: Observational study

Methods: Measurement of urinary hCG (total and malignant isoforms) and serum malignant hCG in 8 subjects with PtCa and in 18 subjects with PHPT (measurement of urine in 10 and of serum in 8).

Results: Total urinary hCG was normal in the benign PHPT control subjects (range: 0-17 fmol/mg Cr; nl< 50). In the PtCa subjects, 3 had normal total urinary hCG levels and survived complication-free for at least 2 years; 3 had persistently elevated total urinary hCG levels (range: 217-1986 fmol/mg Cr) and sustained hip fracture (n=3) and died (n=2) within 3 and 6 months, respectively; 2 had a rise in total urinary hCG and had hip fracture (n=1) and died (n=2) within 4 and 10 months, respectively. Elevated urinary hCG was of the malignant hyperglycosolated isoform. Serum malignant hyperglycosolated hCG values in all of the cancer patients exceeded the maximal serum malignant hCG level of the PHPT subjects with benign disease (3.77 pmol/L).

Conclusion: hCG, especially its hyperglycosolated isoform, might add diagnostic and prognostic information in parathyroid cancer. Further studies would help to elucidate the role of hCG as a potential tumor marker in this disease.
Introduction

Parathyroid carcinoma is a rare presentation of primary hyperparathyroidism (PHPT). In most patients with PHPT today, the disease is benign and asymptomatic. Nevertheless, PHPT is still occasionally seen in the more classical form in which severe biochemical and clinical manifestations predominate. In these patients, a high index of suspicion for parathyroid cancer is important, because the best chance for cure is associated with complete resection at the time of initial surgery. However, on clinical grounds alone, it is very difficult to distinguish between very active benign parathyroid disease and its malignant counterpart. A mutation in a tumor suppressor gene, HRPT2, has been demonstrated in many cases of parathyroid carcinoma. While further studies are ongoing to determine the clinical utility of HRPT2 and its encoded parafibromin measurements, a readily available biochemical marker that reliably distinguishes between malignant and benign parathyroid disease would be useful.

Human chorionic gonadotropin (hCG), a glycoprotein hormone, is normally produced by placental trophoblasts. However, sera from many patients with trophoblastic and certain nontrophoblastic tumors also contain hCG-immunoreactivity, usually of the free β subunit. In hCG-secreting malignancies, an isoform of hCG that is hyperglycosylated is preferentially secreted. In these diseases, elevated expression of standard or hyperglycosolated hCG is an adverse prognostic indicator and helps to predict recurrence.
In the course of a therapeutic trial with the calcimimetic, cinacalcet, we discovered among baseline indices, elevated levels of hCG in the serum of non-pregnant women and men with parathyroid cancer. This unexpected observation raised the possibility that hCG is a marker for parathyroid cancer and might correlate with disease activity. The purpose of this paper is to report findings that support this hypothesis.

Methods

Subjects

Eight consecutive patients with parathyroid cancer and unknown hCG levels were recruited and enrolled. Five of the cancer patients had histological features at initial parathyroid surgery that were consistent with carcinoma; of those 5, 4 had either concomitant or subsequent metastatic disease (mediastinal and lung) while the other subject had persistent hypercalcemia (>3.5 mmol/L) and high PTH levels (>100 pmol/L). The other 3 cancer patients had initial histological features that were consistent with parathyroid adenomas, but had recurrences of hypercalcemia with subsequent surgeries and histological findings consistent with parathyroid cancer, as well as neck metastases in 2 of the patients. Parathyroid carcinoma was thus confirmed on histology in all of the patients, either on initial or repeat parathyroid surgery, with classic pathological characteristics, such as capsular invasion, being seen in all 8 patients. One subject (patient #1) had a suggestive history for Hyperparathyroidism-Jaw Tumor Syndrome, with a jaw tumor and a brother with benign PHPT. He was subsequently tested for HRPT2 mutation and was found to be positive. Since commercial testing was not
available at the time of study initiation, other patients were not routinely tested for HRPT2.

18 subjects with benign primary hyperparathyroidism (PHPT) were also enrolled. In the benign PHPT urinary control group, 10 patients had measurement of urinary hCG and of the urinary ratio of the malignant hCG isoform. In the benign PHPT serum control group, 8 other patients had measurement of the malignant hCG isoform in the serum. In both control groups, benign PHPT was characterized by asymptomatic mild hypercalcemia and elevated PTH levels. The benign PHPT patients were seen in our Bone Unit at the same time that the study data were being collected on the parathyroid cancer subjects. There was no known bias in terms of the way the PHPT subjects were selected. None had clinical features of parathyroid cancer, such as a palpable neck mass or significant renal or skeletal disease. The Institutional Review Board of Columbia University Medical Center approved the protocol. All patients gave written informed consent.

Protocol

Serial measurements of urinary and serum hCG were performed in the cancer patients: at study entry, and then at varying intervals after exposure to cinacalcet (administered on an escalating dosage regimen 30 mg twice daily to 90 mg 4 times daily) over 16 weeks. The 18 patients with benign parathyroid disease had a single measurement of hCG (10 of urine and 8 of serum). The PHPT patients did not receive cinacalcet. All urine samples were measured in a first morning void and all blood samples were obtained fasting in the morning. In the cancer patients, samples were
collected prior to the morning cinacalcet dose. Serum and urine were immediately frozen and kept at –80 degrees. Serum calcium and PTH measurements were made in all patients.

Biochemical Determinations

Serum calcium was measured at Covance Laboratory (Indianapolis, IN). Intact PTH was measured using an immunoradiometric assay (CV = 4.2% to 6.4%; Allegro PTH, Nichols Institute Diagnostics; San Juan Capistrano, CA).

hCG measurement in urine was performed with two-site immunoradiometric assays measuring hyperglycosylated hCG (B152 capture), hCG and β subunit (CTP104 capture) using a detection antibody directed to hCG and hCG β but not to the CTP region (B207). Monoclonal antibodies B152 and B207 have been described along with procedures for their use in two site immunometric assays. The hCG employed as standard for these assays was the new WHO 1st Reference Reagent for Immunoassay 99/688. B207 was used as detection (radiolabeled antibody) and B152 as capture antibody for measuring hyperglycosylated (core 2) hCG, while CTP104 was used as capture antibody for measuring total hCG (core 1 and core 2 forms). Capture antibodies B152 and CTP104 recognize epitopes on the CTP and are sensitive to the glycosylation status of this portion of hCG. The presence of hyperglycosylated hCG isoforms was detected by a ratio method that involved two sandwich immunoassay measurements on the same specimen using the hCG reference preparation as standard. The amount determined in an assay using B152 for capture and 125I-B207 for detection
was divided by that measured in an assay using CTP104 for capture and $^{125}\text{I}}$-B207 for detection. The range of ratios found range between 0.5-4 with the highest ratio indicative of the highest content of B152 isoforms.

In serum, a direct analysis for hyperglycosylated hCG used an automatic assay system standardized with a hyperglycosylated hCG form isolated from a cancer patient (the immunogen for antibody B152) 15.

Statistical Analysis

Statistical analyses were performed using SPSS (version 11). Continuous data are presented as mean value ± SD; categorical data are reported as absolute number. A Cox Proportional Hazards model was used to estimate the survivor function as predicted by urinary hCG levels with four observed and four right-censored observations. Levels of urinary hCG for hypothetical patients with parathyroid cancer were entered into the resultant model to show the failure curves that would be predicted.

Results

Urinary hCG

The 10 benign PHPT urinary control subjects (2 male, 8 female; age: 63± 15 yrs) had mildly elevated serum calcium (2.7 ± 0.1 mmol/L; nl: 2.1-2.6 mmol/L) and PTH (9.7 ± 0.2 pmol/L; nl: 1.0-6.8 pmol/L) levels, while the parathyroid cancer patients (5 male, 3 female; age: 56 ± 13 yrs) had markedly elevated serum calcium (3.9 ± 0.5 mmol/L;
p<0.0001 vs. benign PHPT urinary controls) and PTH levels (81.1 ± 64 pmol/L; p= 0.003 vs. benign PHPT urinary controls) at presentation.

Total urinary hCG was normal in the benign PHPT urinary controls subjects (range: 0-17 fmol/mg Cr; nl< 50). In the subjects with parathyroid cancer, the initial hCG levels were done at a mean of 9 ± 7 (range: 4-26) years after parathyroid carcinoma surgery. In these subjects, 3 of the 8 patients (one male) had persistently normal total urinary hCG levels (<50 fmol/mg Cr). These 3 subjects all survived without major complications in 2 years of follow-up.

3 of the other subjects with parathyroid cancer (one male) had persistently abnormal elevations in total urinary hCG (range: 217-1986 fmol/mg Cr). The 3 patients showed a trend towards higher serum calcium levels as compared to the 3 parathyroid cancer patients with normal hCG (3.3 ± 0.5 vs. 3.0 ± 0.3 mmol/L). The 3 patients with elevated hCG all had a poor prognosis with hip fracture (n=3) and death (n=2) occurring within 3 and 6 months, respectively, of their highest hCG measurement.

In the 2 remaining cancer patients (both male), total urinary hCG became abnormally elevated over time. Again the presence of high hCG levels heralded a poor outcome. In one patient (patient #7), PTH increased, while in the other (patient #8), marked decreases in BMD (7.2% at the spine, 5.4% at the total hip and 3.5% at the distal 1/3 radius) were observed over the interval in which hCG levels rose. This patient
sustained a hip fracture within 4 months and both patients died within 10 months of the rise in hCG levels.

All of the 5 cancer patients with an elevated total urinary hCG had a high level of the urinary malignant hCG hyperglycosolated isoform. In contrast, this isoform was undetectable in the other 3 cancer patients with the better clinical outcomes, and in the benign PHPT subjects.

Serum hCG

The benign PHPT serum control subjects (3 male, 5 female; age: 62 ± 13) had mildly elevated serum calcium (2.7 ± 0.2 mmol/L; p<0.0001 vs. cancer subjects) and PTH (12.3 ± 6.2 pmol/L; p= 0.009 vs. cancer subjects) levels. In the serum, only the malignant isoform, and not total serum hCG, was measured. The normal range for serum malignant hCG is not defined. In the benign PHPT subjects, the range of serum malignant hCG was 1.76 to 3.77 pmol/L. The cancer patients tended to have higher serum malignant hCG values than the PHPT patients, ranging from 2.01- 10.81 pmol/L. Although values below 3.77 pmol/L (the maximum value in a PHPT subject) were observed in the cancer patients, all of the cancer patients had serum malignant hCG values which exceeded that maximal PHPT value at least at one of the serial time points.

Effects of cinacalcet
hCG levels were obtained at varying time points of cinacalcet administration (range of timepoints: 0-120 weeks). Nevertheless, there did not appear to be an effect of cinacalcet on hCG levels.

Discussion

We found that hCG levels were elevated at certain time points in most patients with parathyroid cancer. The malignant isoform of hCG, the predominant form in these patients, was not seen at all in subjects with PHPT. In patients with malignant disease, increased urinary hCG or a rise in urinary hCG levels appeared to signal a more aggressive stage of parathyroid cancer. High urinary hCG levels were associated with a greater likelihood of hip fracture and death. Hip fractures and/or death occurred in the 5 cancer subjects with persistently high or rising hCG levels, while neither occurred in the 3 cancer subjects with persistently low hCG levels.

These data suggest that urinary hCG levels might have the potential to discriminate between parathyroid adenomas and carcinomas. In our pilot sample, the sensitivity was approximately 40% (three of eight patients with carcinomas had raised urinary hCG), but the specificity was 100% (none of the ten urinary measurements done in PHPT were above the diagnostic threshold). Future studies with larger numbers of subjects would help to better define the properties of urinary hCG as a diagnostic test in parathyroid carcinoma. Even if the sensitivity in a larger population were found to be no higher than 50%, the negative predictive value (the probability that a cancer-free subject will test negative) would still be high because of the very low prevalence of parathyroid
carcinoma. In other words, a normal urinary hCG at diagnosis does not rule out the possibility of parathyroid cancer, but an elevated urinary hCG confirms it.

hCG is well-known to be expressed in gestational trophoblastic disease and in germ cell tumors. However, it can be expressed by nontrophoblastic cancers as well. These include transitional cell carcinoma of the bladder and urinary tract, renal cancer, prostate cancer, gastrointestinal cancer, carcinoid, lung cancer, breast cancer, gynecologic cancer, oral cancer and lymphoma. In general, hCG is more likely to be expressed when these tumors are poorly differentiated. hCG appears to enhance the growth of tumor cells in culture by preventing apoptosis, possibly explaining why the expression of hCG is associated with aggressive cancer. Hyperglycosolated hCG, the malignancy-associated isoform, is the predominant isoform of hCG in a healthy, pregnant woman until the 6th week of gestation. It is also produced in choriocarcinomas and can be detected by an antibody that was raised using a choriocarcinoma-derived form of hCG. The concentration of hyperglycosolated hCG has been shown to correlate with malignancy.

In a previous study, Stock and colleagues measured the concentration of hCG subunits in the serum of 70 patients with PHPT, 3 of whom had parathyroid cancer. 2 of the cancer patients had elevations in alpha and beta hCG, which fell after surgical cure. In the same study, selective venous catheterization in 42 patients with benign PHPT yielded 10-fold gradients of PTH, as expected, but also a mild elevation of hCG alpha subunit in one patient. In another report, immunostaining of parathyroid tissue was
positive for hCG in 6 of 31 patients with parathyroid adenomas and in 1 out of 3 cancer patients. These immunohistochemical data suggest that parathyroid cells can acquire the capacity to synthesize and express hCG.

Cinacalcet did not appear to affect hCG levels, although a limitation of this study is that hCG levels were obtained at varying time points of cinacalcet administration. Cinacalcet has been shown to lower serum calcium levels in parathyroid cancer, but its effect on the progression of the underlying disease is unknown. An additional limitation is the small number of PHPT subjects; it is conceivable that evaluation of additional PHPT subjects might have revealed elevated hCG levels in some patients with benign disease. A larger study with more PHPT subjects would be able to extend our preliminary observations.

In conclusion, this brief report calls attention to the need for a more detailed investigation of hCG in malignant and benign parathyroid disease. A future area of investigation would be immunolocalization of hCG in the histological samples of the cancers themselves, a finding which would confirm that parathyroid cancer is indeed the source of the hCG measured in serum and urine. These early results suggest that hCG might have the potential to become a marker of disease progression in malignant parathyroid disease. Investigation of patients who have clinically and biochemically severe, but pathologically benign, parathyroid disease, and those with malignant pathology despite mild clinical features will help to elucidate further the utility of hCG as a marker for parathyroid carcinoma.
Acknowledgement: Supported by NIH NIDDK32333, DK074457, NCI R21 CA 98350
References:

26. Butler SA, Ikram MS, Mathieu S, Iles RK. The increase in bladder carcinoma cell population induced by the free beta subunit of human chorionic gonadotrophin is a result of an anti-apoptosis effect and not cell proliferation. Br J Cancer 2000;82(9):1553-6.
Figure 1:
The distribution of urinary hCG values in PHPT and parathyroid carcinoma subjects. A normal urinary hCG does not rule out the possibility of parathyroid cancer (sensitivity is low), but an elevated urinary hCG confirms it (specificity is high).

Figure 2:
The survivor function predicted from the Cox Proportional Hazards model, estimated from the study observations. The survivor function estimate was applied to urinary hCG measurements of 0, 50, 100, 250, 500, 750, 1000 or 2000 fmol/mg Cr at weeks 0, 56, 74, 77 and 137. Increasing urinary hCG measurements are associated with a decreasing survivor function.
Table:

Individual Urinary hCG Levels (Total Levels and Ratio of Malignant hCG: Total hCG), Calcium, PTH and Clinical Outcomes for 10 PHPT Subjects and 8 Parathyroid Carcinoma Subjects.

Carcinoma subjects are grouped according to whether their hCG levels were persistently low, high, or increased over time. The values in the cancer subjects were those obtained at initial hCG measurement, which were measured at varying stages of cinacalcet treatment. Repeat hCG levels are shown for subjects 7 and 8; the levels remained unchanged in the first 6 subjects. Values are mean ± SD.
<table>
<thead>
<tr>
<th>Subjects</th>
<th>Urinary hCG fmol/ mg Cr</th>
<th>Urinary Malignant isoform nl: <0.5</th>
<th>Calcium mmol/L</th>
<th>PTH pmol/L</th>
<th>Hip Fracture/ Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPT Subjects (n= 10)</td>
<td>6.1 ± 6</td>
<td>0</td>
<td>2.7 ± 0.1</td>
<td>9.7 ± 0.2</td>
<td>No/No</td>
</tr>
<tr>
<td>Parathyroid Carcinoma Subjects (n=8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent low hCG (n=3)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3.1</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3.3</td>
<td>35</td>
</tr>
<tr>
<td>Persistent high hCG (n=3)</td>
<td>4</td>
<td>800</td>
<td>0.9</td>
<td>2.9</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1986</td>
<td>0.8</td>
<td>3.2</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>217</td>
<td>0.6</td>
<td>3.9</td>
<td>54</td>
</tr>
<tr>
<td>Rise in hCG (n=2)</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>3.2</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2662</td>
<td>1.7</td>
<td>3.3</td>
<td>130</td>
<td>No/Yes</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>956</td>
<td>1.5</td>
<td>2.9</td>
<td>227</td>
<td>Yes/Yes</td>
</tr>
</tbody>
</table>
Figure 1

![Graph showing the relationship between serum calcium mmol/L and urinary hCG fmol/mg Cr.](image_url)

- PHPT (open diamond)
- Parathyroid cancer (filled square)
Figure 2

Survivor Function Estimate

Urinary hCG (fmol/mg Cr)

wk 0
wk 56
wk 74
wk 77
wk 137