Pegvisomant is a pegylated analogue of human growth hormone (GH) that functions as a GH receptor antagonist. Although its use is currently limited to patients with acromegaly (1), there exists considerable interest in the potential use of pegvisomant for the treatment of a variety of tumours whose growth may be promoted by insulin-like growth factor-I (IGF-I). We report the case of a 74-year-old woman with acromegaly, treated with pegvisomant, in whom we have documented the growth rate of a meningioma noted incidentally during the course of routine radiological imaging.

The patient’s acromegaly was diagnosed in 1992 on the basis of failure of suppression of serum GH during a 75 g oral glucose load (nadir serum GH 10 mU/l) and an elevated serum IGF-I concentration (489 ng/ml, age-adjusted normal range 109–269). Magnetic resonance imaging (MRI) of the pituitary demonstrated a 9 mm intrasellar pituitary mass lesion. She declined surgical adenomectomy or pituitary irradiation and was successfully treated with thrice-daily s.c. octreotide (serum IGF-I within age-adjusted normal range). In 1998, she enrolled in a 12 week placebo-controlled study of pegvisomant in the treatment of acromegaly (2) and was randomised to receive pegvisomant 10 mg daily. At its conclusion, she continued pegvisomant in an open-label study, but therapy was suspended after 9 months because of a shortage of drug. Eight weeks after cessation of pegvisomant, depot octreotide 10 mg four-weekly was commenced and continued for 26 months. In December 2001, she enrolled in an open-label study of patients with acromegaly converting from stable treatment with depot octreotide to therapy with pegvisomant and continued this drug at a dose of 10 mg daily until May 2004.

Regular surveillance pituitary imaging was performed during both clinical trials. Incidental note was made, at the start of the first trial, of a dural-based homogeneously enhancing mass related to the greater wing of the sphenoid, typical of a meningioma (Fig. 1A). She reported no symptoms referable to the mass and declined any surgical intervention. Axial, sagittal and coronal dimensions of the mass were recorded at each scan and the volume calculated, for a prolate ellipsoid, using the formula \(\frac{4}{3}\pi \left(\frac{\text{height}}{2}\right)\left(\frac{\text{width}}{2}\right)\left(\frac{\text{depth}}{2}\right)\) (3). The volume of the meningioma increased from 470 to 4810 mm\(^3\) 5 years later (Fig. 1B), with no discernible inhibitory effect of pegvisomant therapy (Fig. 2).

Pegvisomant inhibits the functional dimerisation of cell surface GH receptors, thereby reducing IGF-I...
synthesis (4). Evidence that growth of a variety of
tumours is promoted by IGF-I has generated interest
in the possible role of pegvisomant as an anti-cancer
agent. In particular, data in nude mice indicate that
pegvisomant inhibits growth of meningioma cells
in vivo (5), leading to speculation that this drug may
have a role in patients with inoperable or recurrent
meningioma (6). To the best of our knowledge, this
is the first report of the effect of pegvisomant therapy
on growth of a non-pituitary tumour in vivo in a
human subject. No inhibitory effect of pegvisomant
therapy on meningioma growth was evident, empha-
sising the need for caution in extrapolating in vitro
and animal data to therapy in human subjects. Further
reports of the effect of pegvisomant therapy for acromegaly on coincidentally noted non-pituitary
tumours are encouraged.

Acknowledgements

We gratefully acknowledge the technical assistance of
Shannon K Campbell. The Department of Endocrin-
ology receives financial support from Pfizer Inc. for its
research into growth and growth factors.

References

1 Van der Lely AJ, Hutson RK, Trainer PJ, Besser GM, Barkan AL,
Katznelson L, Klibanski A, Herman-Bonert V, Melmed S,
Vance ML, Freda PU, Stewart PM, Friend KE, Clemmons DR,
Johannsson G, Stavrou S, Cook DM, Phillips LS, Strasburger CJ,
Hackett S, Zib KA, Davis RJ, Scarlett JA & Thorner MO. Long-
term treatment of acromegaly with pegvisomant, a growth hor-
2 Trainer PJ, Drake WM, Katznelson L, Freda PU, Herman-Bonert V,
van der Lely AJ, Dimaraki EV, Stewart PM, Friend KE, Vance ML,
Besser GM, Scarlett JA, Thorner MO, Parkinson C, Klibanski A,
Powell JS, Barkan AL, Sheppard MC, Malsonado M, Rose DR,
Clemmons DR, Johannsson G, Bengtsson BA, Stavrou S,
Kleinberg DL, Cook DM, Phillips LS, Bidlingmaier M, Strasburger
CJ, Hackett S, Zib K, Bennett WF & Davis RJ. Treatment of
acromegaly with the growth hormone receptor antagonist pegviso-
2000.
4 Kopchick JJ, Parkinson C, Stevens EC & Trainer PJ. Growth hor-
mone receptor antagonists: discovery , development, and use in
patients with acromegaly . Endocrine Reviews 2002 56 23–646.
5 Friend KE. Cancer and the potential place for growth hormone
receptor antagonist therapy. Growth Hormone and IGF Research
2001 11 (Suppl A) S121–S123.
6 McCutcheon IE, Flyvbjerg A, Hill H, Li J, Bennett WF, Scarlett JA &
Friend KE. Antitumor activity of the growth hormone receptor
antagonist pegvisomant against human meningiomas in nude

Received 29 September 2004
Accepted 6 October 2004