Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis

Leonidas H Duntas, Emilia Mantzou and Demetrios A Koutras

Endocrine Unit, Evgenidion Hospital, University of Athens Medical School, 20 Papadiamantopoulou Str, 11528 Athens, Greece

(Correspondence should be addressed to Leonidas H Duntas; Email: ledunt@otenet.gr)

Abstract

Objective: Selenium (Se) in the form of selenocysteine is an essential component of the family of the detoxifying enzymes glutathione peroxidase (Gpx) and of the iodothyronine selenodeiodinases that catalyse the extrathyroidal production of tri-iodothyronine (T3). Thus, Se deficiency may seriously influence the generation of free radicals, the conversion of thyroxine (T4) to T3 and the autoimmune process. Therefore, we performed a randomised, placebo-controlled prospective study to investigate the effects of Se treatment on patients with autoimmune thyroiditis (AIT).

Design and methods: Sixty five patients aged 22–61 years (median age 48 years) with AIT were recruited into two groups. Group I (Gr I) (n = 34) was treated with selenomethionine (Seme) 200 μg, plus l-thyroxine (LT4) to maintain TSH levels between 0.3–2.0 mU/l, whereas group II (Gr II) (n = 31) received LT4 plus placebo over a period of 6 months. Moreover, the pharmacokinetics of Seme were studied in 10 patients and eight volunteers at baseline and 2 h, 4 h, 6 h and 24 h after oral administration of a 200 μg tablet of Seme. Finally, Se levels were measured at the end of the study in some patients of both groups and their results were correlated with thyroid hormone levels.

Results: In the pharmacokinetics study, basal serum concentration of Se (75±6 μg/l) was within the reference range (70–125 μg/l), it promptly increased at 2 h, peaked at 4 h (147±17 μg/l; P < 0.0001) and it was abundant in serum at 24 h. In Gr I, antibodies against thyroid peroxidase (anti-TPO) levels showed an overall decrease of 46% at 3 months (from 1875±1039 U/l to 1013±382 U/l; P < 0.0001) and of 55.5% at 6 months. In Gr II the overall decrease of anti-TPO amounted to 21% at 3 months and to 27% at 6 months (from 1758±917 U/l to 1284±410 U/l; P < 0.005). There were no significant changes of antibodies against thyroglobulin levels between the groups. At the end of this study Se levels were found to be statistically significantly increased in Gr I (n = 9/34) compared with Gr II (n = 11/31) (97±8.4 vs 79±8; P < 0.01) but no correlation with thyroid hormone was found.

Conclusions: Seme is proven to be rapidly absorbed by the gastrointestinal tract. It appears to be useful as adjunctive therapy with LT4 in the treatment of AIT. The exact mechanism(s) is not very well determined, it might enhance the activity of detoxifying enzymes and enforce the defense against oxidative stress.

CLINICAL STUDY

Introduction

Selenium (Se) in the form of selenocysteine, an analogue of cysteine in which sulphur is replaced by Se, is an essential component of the glutathione peroxidase enzymes (Gpx) and of thioredoxin reductase (TR) which protects tissues from oxidative damage by reduction of hydrogen peroxide (H2O2) (1). Another important class of selenoproteins are the iodothyronine selenodeiodinases, D1 and D2, which are responsible for the production of biologically active tri-iodothyronine (T3) via 5'-deiodination in the various extrathyroidal tissues (2). Se in plasma is incorporated in selenoprotein P, that may serve as a transport protein for Se and facilitate whole body Se distribution (3). There are scarce data regarding the effects of Se supplementation on thyroid function. In a trial conducted in northern Zaire, a severely Se and iodine deficient area, two months of treatment with 50 μg selenomethionine (Seme) resulted in a spectacular fall in serum thyroxine (T4) that could only be partially recovered after iodine supplementation (4). In animal models, long term Se nutritional deficiency induced only marginal effects on the thyroid T4 and T3 content and on the activity of 5'-D1 in the thyroid gland, revealing a resistance of the gland to Se deficiency (5). In contrast, peripheral 5'-D1 and Gpx activity in the thyroid were markedly decreased (6). Currently, a study from South Germany, an area with mild iodine and Se deficiency, reported that Se...
substitution with sodium selenite led to improvement of inflammatory activity in patients with autoimmune thyroiditis (AIT) (7). However, it is difficult to extrapolate these results to a wider population, as there is a broad variation of Se concentrations in the European population that may reflect dietary habits, bioavailability of Se compounds, racial differences or various analytical methods. South Greece and more precisely the region around Athens (Attiki) is Se and iodide sufficient (8, 9). For the above mentioned reasons, and since there are no data available, we conducted this investigation to assess the effects of long-term treatment with Se combined with l-thyroxine (l-T4) on the autoimmune and thyroid function of patients with AIT.

Subjects and methods
Sixty five patients (mean age 47.8 years, range 22 to 61 years), 56 female and 9 male, with AIT (antibodies against thyroid peroxidase (anti-TPO) >100 U/l) and mild thyroid failure (MTF) characterized by normal free (f)T4 and T3 and increased serum thyroid stimulating hormone (TSH) levels (TSH >4 mU/l) were randomized into two groups. Group I (Gr I) (n = 34) was treated with l-T4 in a titrated dose to maintain TSH free (f)T4 and T3 and increased serum thyroid stimulating hormone (TSH) levels (TSH >4 mU/l) were randomized into two groups. Group I (Gr I) (n = 34) was treated with l-T4 in a titrated dose to maintain TSH from 0.3 to 2.0 mU/l combined with Se in the form of 200 μg Se (Lamberts, Athens, Greece) administered once daily. Group 2 (Gr II) (n = 31) received l-T4 plus placebo. None of the patients were undergoing treatment with anti-depressive drugs, anti-psychotic drugs, or preparations containing vitamins or trace elements. The investigation was performed over a period of 6 months. Serum concentrations of FT4, T3, TSH, anti-TPO and antibodies against thyroglobulin (anti-Tg) were measured at baseline and after 3 and 6 months of treatment. Moreover, to detect any correlation with thyroid hormone, serum Se levels were measured arbitrarily in 9/34 patients of Gr I and 11/31 of Gr II.

To obtain some kinetic data of Seme, blood samples were collected at 0, 2, 4, 6 and 24 h after the intake of a tablet containing 200 μg Se in 10 patients and 8 volunteers. Informed consent was obtained from all participants in this study.

Measurements
Serum Se levels were determined in duplicate with a graphite furnace atomic absorption spectrometer with the Zeeman background correction (Spectra 300, Varian, Australia) by using a standard addition method. Samples were compared with the standard curve by linear least-squares fit analysis. The detection limit for Se was 7.0 μg/l (0.090 μmol/l). Within run and run-to-run coefficients of variation (CV) for Se were 1.9% and 4.4% respectively.

Serum concentrations of anti-Tg and anti-TPO were measured using IRMA (DiaSorin, Salugia, Italy) with a cut-off value for anti-Tg at 100 U/l, determined as the first standard point, and for anti-TPO at 100 U/l. All values below these cut-off points were graded as negative. The intra-assay CV values were 4.5% for anti-Tg and 4.8% for anti-TPO. The interassay CV values were 4.1% and 9.1% respectively.

Serum T3 levels were determined using Amerlex MT3 RIA Kits (Johnson and Johnson Clinical Diagnostics Ltd, Amersham, UK). The intra-assay CV value was 5%, whereas the interassay CV value was 5.8%. FT4 was measured using a one-site chemiluminescence immunometric method (FT4-Estimate, Nichols, San Juan Capistrano, CA, USA). The normal range for FT4 was 9–25 pmol/l. The mean intra-assay CV was 5.6% and the interassay CV was 8.5%. TSH concentrations were determined with TSH third-generation assay (Nichols). The normal values ranged from 0.3 to 4.0 mU/l. The mean intra-assay CV at 0.01 mU/l was 12% and at 1.29 mU/l was 4.6%. The interassay CV at 0.02 mU/l and at 1.28 mU/l was 15.0% and 5.5%, respectively.

Statistics
All results are presented as mean±S.D. Comparisons between baseline and post-selenium serum concentrations were performed by the analysis of variance (ANOVA) for repeated measures. Differences between the groups during the treatment period were analyzed by the Mann–Whitney nonparametric test. To study the relationship between TSH, FT4, T3 and Se concentrations, a linear regression was used. A P value of <0.05 was considered significant.

Results
Serum concentrations of TSH, FT4 and T3 of both groups during the study period are presented in Table 1. There were no statistically significant changes between the two groups at any time during the study.

In the pharmacokinetic study, basal serum concentrations of Se were found to be within the reference range in patients and volunteers (75±6 μg/l vs 77±7 μg/l, non-significant). Se increased 2 h after intake (122±14 μg/l; P < 0.0001 vs baseline), peaked at 4 h in both groups (147±17 μg/l; P < 0.0001 vs baseline) and it was abundant in serum at 24 h (102±10 μg/l) (Fig. 1).

In Gr I anti-TPO levels exhibited an overall decrease of 46.0% at 3 months and of 55.5% at 6 months. In a further analysis, by stratifying the patients according to the percentage decrease of anti-TPO levels, 18/34 (53%) in Gr I exhibited a marked decrease of anti-TPO by 73% at 3 months and by 86% at 6 months, whereas 12/34 (35%) showed a decrease of 22% at
3 months and 28% at 6 months and 4/34 (12%) did not show any decrease. In absolute numbers anti-TPO levels decreased from 1875 ± 1039 U/l to 1013 ± 382 U/l ($P < 0.0001$) at 3 months and to 844 ± 227 U/l ($P = 0.05$ vs 3 months) at 6 months (Table 2). In Gr II an overall decrease of anti-TPO by only 21% at 3 months and by 27% at 6 months was registered. In an analysis by subdividing the patients, 22/31 (71%) showed a decrease of anti-TPO amounting to 29% at 3 months and to 32% at 6 months of treatment. In contrast 7/31 (22%) presented a decrease of only 13% at 3 and of 22% at 6 months. In absolute numbers anti-TPO levels decreased from 1758 ± 917 U/l to 1389 ± 520 U/l at 3 months and to 1284 ± 410 U/l ($P < 0.001$) at 6 months (Table 2).

Anti-Tg levels decreased very slightly in both groups without reaching any significant level (Table 1). No side effects have been observed. In Gr I, 25/34 (73.5%) patients reported a satisfactory improvement of mood and sleep and stated less fatigue. In Gr II 15/31 (48.4%) affirmed an amelioration of behavior and tiredness. No correlations could be found between TSH, FT4, T3 and serum Se concentrations.

Discussion

In our study Se levels promptly increased in serum after oral administration of Seme indicating a good absorption of the supplement. The data do not allow us to draw any conclusions about bioavailability, as it depends on the conversion of absorbed Se into a biologically active form and tissue retention. Nevertheless, the increase of Se may lead to the presumption that Seme is rapidly transformed to an active form. Although there is some evidence suggesting that Seme is retained more efficiently than inorganic selenate or selenite, the retained fraction may not all be bioavailable (10).

The most important finding of this study was the striking reduction of anti-TPO levels in patients treated with Seme and LT4 in a borderline Se sufficient region. The mechanism(s) of action of Se on the immune system is not well determined. Several enzymatic systems, such as dismutases and Gpx, have evolved to circumvent the electron spin restriction of O2 reduction and prevent the accumulation of very reactive free radicals in the various organs such as superoxide...
anion radical (O$_2^-$), hydroxyl radical (OH$^-$) and H$_2$O$_2$
(11). H$_2$O$_2$ in the thyroid gland may easily cross the
apical membrane to the luminal site where it reacts
with TPO for the iodination of Tg (12). It is well
known that the iodination of Tg not only requires
H$_2$O$_2$ and TPO but also iodide in close proximity (13).
Thus, Gpx activity at the apical membrane may
reduce the substrate for Tg iodination decreasing the
H$_2$O$_2$ production. The scavenging activity of Gpx is
regulated by the production rate of O$_2^-$ and H$_2$O$_2$
(14). In contrast, the maintenance of the scavenging
capacity during states of increased O$_2^-$ flux is dependent
on the nutritional levels of Se, as low serum levels
appear to be reflected in low Gpx activity (15). How-
ever, the normal basal serum Se concentrations in
our study do not exclude low intrathyroidal Se levels and
reduced scavenging activity in AI. In this hypo-
thesis selenoprotein P might have a crucial role (16).
Furthermore, Se supplementation may additionally
increase TR activity. TR is a strong defender against
oxidative stress and it has been reported high in acute
and reduced in chronic phase of some diseases (17).

The reduction of anti-TPO in our study was very
prominent in the first 3 months in the group treated
with Se and it was further sustained after 6 months
of treatment. One explanation could be a lower baseline
intrathyroid Se concentration and decreased scaveng-
ing activity possibly due to a prolonged inflammatory
process that has been reverted by Se supplementation.
Thus, administration of Seme 200 mg per day over 6
months may increase intrathyroid Se levels without
saturating this biological compartment. The decrease
of anti-TPO levels was slightly more profound compared with the study by Gärtnert et al. (7). Some
reasons for this could be that the initial values of
anti-TPO were higher in our patients and/or differences in nutritional Se intake.

We could not detect any difference regarding anti-Tg
levels between both groups, in contrast to previous
report by other authors (7). The discrepancies might
be due to differences in iodine intake.
The levels of thyroid hormone were not affected by
Seme treatment, indicating a sufficient Se intake in
these patients. This is consistent with other data show-
ing that Se treatment of patients with thyroiditis did not
affect thyroid hormone synthesis (18). Furthermore, Se
is not a limiting factor for peripheral T$_4$ to T$_3$
conversion in patients with congenital hypothyroidism and
borderline Se intake (19). Thus, Se intake does not
cause any change in thyroid hormone metabolism
as 5'DI-I remains unchanged in populations with
sufficient iodine and Se intake.

Finally, Seme treatment was very well tolerated. The
striking majority of the patients reported an improve-
ment in mood and well-being. This is supported by
other researchers who showed that healthy men who
consumed dietary Se at high levels (226 µg/day) had
a significant improvement of their moods as compared
with those consuming 32 µg Se per day in their diets
(20). This may be due to changes in dopamine
and/or serotonin metabolism in the CNS (21).

Conclusively, our study demonstrates that Seme
supplementation combined with iT$_3$ may enhance
immunocompetence without affecting thyroid
hormone metabolism. However, further research is
required to clarify the exact mechanism of action and
demonstrate if modification of Se dietary intake,
especially in areas with selenium deficiency, may also
strengthen immunocompetence.

References
1 Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG &
Hoeckstra WG. Selenium: biochemical role as component of gluta-
2 Bianco AC, Salvatore D, Gereben B, Berry MJ & Larsen PR. Bio-
chemistry, cellular and molecular biology, and physiological
roles of the iodothyronine selenodeiodinases. Endocrine Reviews
2002 23 38–89.
3 Brown KM & Arthur JR. Selenium, selenoproteins and human
4 Contempre B, Dumont JE, Ngo B, Thilly CH, Diplock AT &
Vanderpas J. Effect of selenium supplementation in hypothyroid
subjects of an iodine and selenium deficient area: the possible
danger of indiscriminate supplementation of iodine-deficient sub-
jects with selenium. Journal of Clinical Endocrinology and Metab-
5 Hotz CS, Pittpatrick DW, Trick KD & L'Abbe MR. Dietary iodine
and selenium interact to affect thyroid hormone metabolism of
Behne D. Effects of selenium and iodide deficiency on type I,
type II and type III iodothyronine deiodinases and circulating
thyroid hormones in the rat. Experimental and Clinical Endoc-
riology 1993 101 87–93.
7 Gärtnert R, Gasnier B, Dietrich JW, Krebs B & Angstwurm
MWA. Selenium supplementation in patients with autoimmune
thyroiditis decreases thyroid peroxidase antibodies conelec-
87 1687–1691.
8 Thorling EB, Overvad K & Geboers J. Selenium status in Europe-
anian data: a multicenter study. Annals of Clinical Research
9 Bratokos MS, Kanaki HC, Vasiliou-Waite A & Ioannou PV. The
nutritional selenium status of healthy Greeks. Science of the Total
10 Fairweather-Tait SJ. Bioavailability of selenium. European Journal
11 Del Maestro RF. Free radicals as mediators of tissue injury. In Trace
Elements Micronutrients and Free Radicals, pp 25–51. Ed. IE
12 Bjorkman U & Ekholm R. Accelerated exocytosis and H$_2$O$_2$
generation in isolated thyroid follicles enhance protein iodination.
13 Nakamura Y, Ohtaki S, Makino R, Tanaka T & Ishimura Y.
Superoxide anion is the initial product in the hydrogen peroxide
formation catalysed by NADPH oxidase in porcine thyroid plasma
membrane. Journal of Biological Chemistry 1989 264
4759–4761.
14 Jamieson D, Chance B, Cadenas E & Boveris A. The relation of free
radical production to hyperoxia. Annual Review of Physiology
1986 48 703–719.
15 Del Maestro RF & McDonald W. Subcellular localisation of
superoxides, glutathione peroxidase and catalase in developing

www.eje.org

Received 24 July 2002
Accepted 18 December 2002